Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20094, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209858

RESUMEN

Exciton transfer along a bio-polymer is essential for many biological processes, for instance, light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a bio-polymer chain, also discussing the effects of environmental decoherence. The generality of our results makes them ideal candidates to design new tests of quantum features in complex bio-molecules.


Asunto(s)
Teoría Cuántica , Fotosíntesis , Fotones
2.
Phys Rev Lett ; 129(12): 120505, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179156

RESUMEN

Approximation based on perturbation theory is the foundation for most of the quantitative predictions of quantum mechanics, whether in quantum many-body physics, chemistry, quantum field theory, or other domains. Quantum computing provides an alternative to the perturbation paradigm, yet state-of-the-art quantum processors with tens of noisy qubits are of limited practical utility. Here, we introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches, enabling the solution of large practical quantum problems using limited noisy intermediate-scale quantum hardware. The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian, while the introduction of perturbative coupling permits the quantum processor to simulate systems larger than the available number of physical qubits. We present an explicit perturbative expansion that mimics the Dyson series expansion and involves only local unitary operations, and show its optimality over other expansions under certain conditions. We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies, and study different physical phenomena, such as information propagation, charge-spin separation, and magnetism, on systems of up to 48 qubits only using an 8+1 qubit quantum hardware. We demonstrate our scheme on the IBM quantum cloud, verifying its noise robustness and illustrating its potential for benchmarking large quantum processors with smaller ones.

3.
Phys Rev Lett ; 128(8): 080401, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275647

RESUMEN

How irreversibility arises in a universe with time-reversal symmetric laws is a central problem in physics. In this Letter, we discuss a radically different take on the emergence of irreversibility, adopting the recently proposed constructor theory framework. Irreversibility is expressed as the requirement that a task is possible, while its inverse is not. We prove the compatibility of such irreversibility with quantum theory's time-reversal symmetric laws, using a dynamical model based on the universal quantum homogenizer. We also test the physical realizability of this model by means of an experimental demonstration with high-quality single-photon qubits.

4.
Sci Adv ; 7(38): eabe4742, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524847

RESUMEN

We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalized temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits.

5.
Entropy (Basel) ; 22(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33286002

RESUMEN

Pseudo-density matrices are a generalisation of quantum states and do not obey monogamy of quantum correlations. Could this be the solution to the paradox of information loss during the evaporation of a black hole? In this paper we discuss this possibility, providing a theoretical proposal to extend quantum theory with these pseudo-states to describe the statistics arising in black-hole evaporation. We also provide an experimental demonstration of this theoretical proposal, using a simulation in optical regime, that tomographically reproduces the correlations of the pseudo-density matrix describing this physical phenomenon.

6.
Phys Rev Lett ; 125(7): 070603, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857528

RESUMEN

We propose a thermodynamic refrigeration cycle which uses indefinite causal orders to achieve nonclassical cooling. The cycle cools a cold reservoir while consuming purity in a control qubit. We first show that the application to an input state of two identical thermalizing channels of temperature T in an indefinite causal order can result in an output state with a temperature not equal to T. We investigate the properties of the refrigeration cycle and show that thermodynamically, the result is compatible with unitary quantum mechanics in the circuit model but could not be achieved classically. We believe that this cycle could be implemented experimentally using tabletop photonics. Our result suggests the development of a new class of thermodynamic resource theories in which operations are allowed to be performed in an indefinite causal order.

7.
Phys Rev Lett ; 125(4): 040401, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794810

RESUMEN

In the Aharonov-Bohm (AB) effect, a superposed charge acquires a detectable phase by enclosing an infinite solenoid, in a region where the solenoid's electric and magnetic fields are zero. Its generation seems therefore explainable only by the local action of gauge-dependent potentials, not of gauge-independent fields. This was recently challenged by Vaidman, who explained the phase by the solenoid's current interacting with the electron's field (at the solenoid). Still, his model has a residual nonlocality: it does not explain how the phase, generated at the solenoid, is detectable on the charge. In this Letter, we solve this nonlocality explicitly by quantizing the field. We show that the AB phase is mediated locally by the entanglement between the charge and the photons, like all electromagnetic phases. We also predict a gauge-invariant value for the phase difference at each point along the charge's path. We propose a realistic experiment to measure this phase difference locally, by partial quantum state tomography on the charge, without closing the interference loop.

8.
Phys Rev E ; 101(5-1): 052128, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575248

RESUMEN

We study an arbitrary nonequilibrium dynamics of a quantum bipartite system coupled to a reservoir. For its characterization, we present a fluctuation theorem (FT) that explicitly addresses the quantum correlation of subsystems during the thermodynamic evolution. To our aim, we designate the local and the global states altogether in the time-forward and the time-reversed transition probabilities. In view of the two-point measurement scheme, only the global states are subject to measurements whereas the local states are used only as an augmented information on the composite system. We specifically derive a FT in such a form that relates the entropy production of local systems in the time-forward transition to the change of quantum correlation in the time-reversed transition. This also leads to a useful thermodynamic inequality and we illustrate its advantage by an example of an isothermal process on Werner states.

9.
Phys Rev E ; 101(2-1): 020201, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168700

RESUMEN

Owing to the ubiquity of synchronization in the classical world, it is interesting to study its behavior in quantum systems. Though quantum synchronization has been investigated in many systems, a clear connection to quantum technology applications is lacking. We bridge this gap and show that nanoscale heat engines are a natural platform to study quantum synchronization and always possess a stable limit cycle. Furthermore, we demonstrate an intimate relationship between the power of a coherently driven heat engine and its phase-locking properties by proving that synchronization places an upper bound on the achievable steady-state power of the engine. We also demonstrate that such an engine exhibits finite steady-state power if and only if its synchronization measure is nonzero. Finally, we show that the efficiency of the engine sets a point in terms of the bath temperatures where synchronization vanishes. We link the physical phenomenon of synchronization with the emerging field of quantum thermodynamics by establishing quantum synchronization as a mechanism of stable phase coherence.

10.
Phys Rev Lett ; 124(4): 040402, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058739

RESUMEN

The accurate and reliable description of measurement devices is a central problem in both observing uniquely nonclassical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range-the entirety of attainable measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications.

11.
Nat Rev Phys ; 2(6): 282-284, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38624338

RESUMEN

In the midst of the COVID-19 pandemic, science is crucial to inform public policy. At the same time, mistrust of scientists and misinformation about scientific facts are rampant. Six scientists, actively involved in outreach, reflect on how to build a better understanding and trust of science.

12.
Phys Rev Lett ; 123(15): 150502, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702284

RESUMEN

The capacity of a channel is known to be equivalent to the highest rate at which it can generate entanglement. Analogous to entanglement, the notion of a causality measure characterizes the temporal aspect of quantum correlations. Despite holding an equally fundamental role in physics, temporal quantum correlations have yet to find their operational significance in quantum communication. Here we uncover a connection between quantum causality and channel capacity. We show the amount of temporal correlations between two ends of the noisy quantum channel, as quantified by a causality measure, implies a general upper bound on its channel capacity. The expression of this new bound is simpler to evaluate than most previously known bounds. We demonstrate the utility of this bound by applying it to a class of shifted depolarizing channels, which results in improvement over previously known bounds for this class of channels.

13.
Nat Commun ; 10(1): 4692, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619670

RESUMEN

Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary operation [Formula: see text]. We demonstrate that the algorithm functions correctly irrespective of what unitary [Formula: see text] the server implements or how the server specifically realizes [Formula: see text]. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped [Formula: see text] ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.

14.
Proc Math Phys Eng Sci ; 475(2225): 20180867, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31236049

RESUMEN

Several experimental and theoretical studies report instances of concerted or correlated multiple proton tunnelling in solid phases of water. Here, we construct a pseudo-spin model for the quantum motion of protons in a hexameric H2O ring and extend it to open system dynamics that takes environmental effects into account in the form of O-H stretch vibrations. We approach the problem of correlations in tunnelling using quantum information theory in a departure from previous studies. Our formalism enables us to quantify the coherent proton mobility around the hexagonal ring by one of the principal measures of coherence, the l 1 norm of coherence. The nature of the pairwise pseudo-spin correlations underlying the overall mobility is further investigated within this formalism. We show that the classical correlations of the individual quantum tunnelling events in long-time limit is sufficient to capture the behaviour of coherent proton mobility observed in low-temperature experiments. We conclude that long-range intra-ring interactions do not appear to be a necessary condition for correlated proton tunnelling in water ice.

15.
Nat Commun ; 10(1): 182, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643140

RESUMEN

Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfather's paradox). Quantum models where a qubit travels back in time solve these problems, at the cost of violating quantum theory's linearity-leading e.g. to universal quantum cloning. Interestingly, linearity is violated even by open timelike curves (OTCs), where the qubit does not interact with its past copy, but is initially entangled with another qubit. Non-linear dynamics is needed to avoid violating entanglement monogamy. Here we propose an alternative approach to OTCs, allowing for monogamy violations. Specifically, we describe the qubit in the OTC via a pseudo-density operator-a unified descriptor of both temporal and spatial correlations. We also simulate the monogamy violation with polarization-entangled photons, providing a pseudo-density operator quantum tomography. Remarkably, our proposal applies to any space-time correlations violating entanglement monogamy, such as those arising in black holes.

16.
Phys Rev E ; 97(5-1): 052135, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906852

RESUMEN

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

17.
Phys Rev Lett ; 120(16): 163601, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756922

RESUMEN

It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime. We demonstrate that strong entrainment is possible for small values of squeezing, and in this regime, the states are nonclassical. Furthermore, we show that the quality of synchronization measured by the FWHM of the power spectrum is enhanced with squeezing.

18.
Sci Bull (Beijing) ; 63(12): 765-770, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658950

RESUMEN

The NOT gate that flips a classical bit is ubiquitous in classical information processing. However its quantum analogue, the universal NOT (UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden. Here we explore the connection between this discrepancy and how UNOT gates affect classical and quantum correlations. We show that while a UNOT gate always preserves classical correlations between two spins, it can non-locally increase or decrease their shared discord in ways that allow violation of the data processing inequality. We experimentally illustrate this using a multi-level trapped 171Yb+ ion that allows simulation of anti-unitary operations.

19.
Nature ; 549(7670): 31, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28880282

Asunto(s)
Gravitación , Humanos
20.
Small ; 13(38)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809455

RESUMEN

Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center. Here, it is shown that by placing living Chlorobaculum tepidum bacteria within a photonic microcavity, the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome can be accessed, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have energy distinct from that of the exciton which can be tuned by modifying the energy of the optical modes of the microcavity. It is believed that this is the first demonstration of the modification of energy levels within living biological systems using a photonic structure.


Asunto(s)
Bacterias/metabolismo , Nanopartículas/química , Fotones , Fotosíntesis , Bacterias/ultraestructura , Imagen Óptica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...