Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935445

RESUMEN

Unprotected iron can rust due to oxygen exposure. Similarly, in our body, oxidative stress can kill cells in an iron-dependent manner, which can give rise to devastating diseases. This type of cell death is referred to as ferroptosis. Generally, ferroptosis is defined as an iron-catalyzed form of regulated necrosis that occurs through excessive peroxidation of polyunsaturated fatty acids within cellular membranes. This review summarizes how ferroptosis is executed by a rather primitive biochemical process, under tight regulation of lipid, iron, and redox metabolic processes. An overview is given of major classes of ferroptosis inducers and inhibitors, and how to detect ferroptosis. Finally, its detrimental role in disease is briefly discussed.

2.
Cell Death Differ ; 30(9): 2092-2103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542104

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury. Here, we report that ferroptosis, an iron-catalyzed mode of regulated cell death (RCD), contributes to MS disease progression. Active and chronic MS lesions and cerebrospinal fluid (CSF) of MS patients revealed several signs of ferroptosis, reflected by the presence of elevated levels of (labile) iron, peroxidized phospholipids and lipid degradation products. Treatment with our candidate lead ferroptosis inhibitor, UAMC-3203, strongly delays relapse and ameliorates disease progression in a preclinical model of relapsing-remitting MS. In conclusion, the results identify ferroptosis as a detrimental and targetable factor in MS. These findings create novel treatment options for MS patients, along with current immunosuppressive strategies.


Asunto(s)
Ferroptosis , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Progresión de la Enfermedad , Axones/metabolismo , Enfermedad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...