Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 12(4): 555-562, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859795

RESUMEN

Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor ß-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.

2.
Bioorg Med Chem ; 27(18): 3998-4012, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31327675

RESUMEN

Several 3',5'-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.


Asunto(s)
Inhibidores de Fosfodiesterasa/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Relación Estructura-Actividad
3.
J Med Chem ; 61(9): 3870-3888, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29672041

RESUMEN

Several trypanosomatid cyclic nucleotide phosphodiesterases (PDEs) possess a unique, parasite-specific cavity near the ligand-binding region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug target for the treatment of African sleeping sickness. Here, we elucidate the molecular determinants of inhibitor binding and reveal that the P-pocket is amenable to directed design. By iterative cycles of design, synthesis, and pharmacological evaluation and by elucidating the structures of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008) and 9 (NPD-039), were potent ( Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects (IC50 = 5.5 and 6.7 µM, respectively). Treatment of parasites with 8 caused an increase in intracellular cyclic adenosine monophosphate (cAMP) levels and severe disruption of T. brucei cellular organization, chemically validating trypanosomal PDEs as therapeutic targets in trypanosomiasis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/química , Amidas/química , Amidas/farmacología , Dominio Catalítico , Concentración 50 Inhibidora , Modelos Moleculares , Terapia Molecular Dirigida , Proteínas Protozoarias/química , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 24(7): 1573-81, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26935942

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4nM) and TbrPDEB2 (IC50: 3nM) (J. Infect. Dis.2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/farmacología , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Fosfodiesterasa/química , Proteínas Protozoarias/metabolismo , Piridazinas/síntesis química , Piridazinas/química , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
5.
J Med Chem ; 55(20): 8745-56, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22963052

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment growing into the parasite-specific P-pocket in the enzyme binding site. The resulting catechol pyrazolinones act as potent TbrPDEB1 inhibitors with IC50 values down to 49 nM. The compounds also block parasite proliferation (e.g., VUF13525 (20b): T. brucei rhodesiense IC50 = 60 nM, T. brucei brucei IC50 = 520 nM, T. cruzi = 7.6 µM), inducing a typical multiple nuclei and kinetoplast phenotype without being generally cytotoxic. The mode of action of 20b was investigated with recombinantly engineered trypanosomes expressing a cAMP-sensitive FRET sensor, confirming a dose-response related increase of intracellular cAMP levels in trypanosomes. Our findings further validate the TbrPDEB family as antitrypanosomal target.


Asunto(s)
Catecoles/síntesis química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Pirazoles/síntesis química , Pirazolonas/síntesis química , Tetrazoles/síntesis química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Sitios de Unión , Catecoles/química , Catecoles/farmacología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazolonas/química , Pirazolonas/farmacología , Relación Estructura-Actividad , Tetrazoles/química , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/enzimología
6.
J Org Chem ; 68(11): 4486-94, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12762754

RESUMEN

Several 2-substituted and 2,5-disubstituted piperazine-3,6-diones were synthesized starting from readily available alpha-amino acids. After activation of a lactam carbonyl via introduction of a methoxycarbonyl group onto nitrogen, this carbonyl was selectively reduced. Treatment of the resulting urethane with protic acid generated the corresponding N-acyliminium ion, which was trapped by a nucleophilic C2-side chain to provide 2,6-bridged piperazine-3-ones. Several aromatic, heteroaromatic, and nonaromatic side chains were used as pi-nucleophiles. In addition, the effect of the presence of a C5-methyl group on the stereochemical outcome of the cyclization was examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...