Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998124

RESUMEN

Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.

2.
Mar Drugs ; 22(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921559

RESUMEN

The skin of fish is a physicochemical barrier that is characterized by being formed by cells that secrete molecules responsible for the first defense against pathogenic organisms. In this study, the biological activity of peptides from mucus of Seriola lalandi and Seriolella violacea were identified and characterized. To this purpose, peptide extraction was carried out from epidermal mucus samples of juveniles of both species, using chromatographic strategies for purification. Then, the peptide extracts were characterized to obtain the amino acid sequence by mass spectrometry. Using bioinformatics tools for predicting antimicrobial and antioxidant activity, 12 peptides were selected that were chemically produced by simultaneous synthesis using the Fmoc-Tbu strategy. The results revealed that the synthetic peptides presented a random coil or extended secondary structure. The analysis of antimicrobial activity allowed it to be discriminated that four peptides, named by their synthesis code 5065, 5069, 5070, and 5076, had the ability to inhibit the growth of Vibrio anguillarum and affected the copepodite stage of C. rogercresseyi. On the other hand, peptides 5066, 5067, 5070, and 5077 had the highest antioxidant capacity. Finally, peptides 5067, 5069, 5070, and 5076 were the most effective for inducing respiratory burst in fish leukocytes. The analysis of association between composition and biological function revealed that the antimicrobial activity depended on the presence of basic and aromatic amino acids, while the presence of cysteine residues increased the antioxidant activity of the peptides. Additionally, it was observed that those peptides that presented the highest antimicrobial capacity were those that also stimulated respiratory burst in leukocytes. This is the first work that demonstrates the presence of functional peptides in the epidermal mucus of Chilean marine fish, which provide different biological properties when the fish face opportunistic pathogens.


Asunto(s)
Acuicultura , Peces , Moco , Animales , Moco/química , Chile , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Vibrio/efectos de los fármacos , Epidermis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación
3.
Animals (Basel) ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35739922

RESUMEN

Antimicrobial peptides (AMP) play an essential role in the innate immune system, modulating the defense response. In a previous study, we demonstrated the antimicrobial activity of synthetic hepcidin (hep20) from rainbow trout (Oncorhynchus mykiss), and its protective effect in European sea bass (Dicentrarchus labrax) challenged with Vibrio anguillarum. Additionally, we described the uptake and distribution of hep20 in different tissues and leukocyte cells. Interestingly, various AMPs characterized in high vertebrates, called host defense peptides (HDPs), also possess immunomodulation activity. For that reason, the present study explores the immunomodulatory abilities of hep20 through in vitro and in vivo studies. First, a monocyte/macrophage RTS-11 cell line from rainbow trout was used to evaluate hep20 effects on pro- and anti-inflammatory cytokines in fish leukocyte cells. Next, the European sea bass juveniles were used to determine if hep20 can regulate the expression of cytokines in fish immune tissues. The results show that hep20 was uptake inner to RTS-11 cells and was able to induce the expression of IL-10, IL-1ß, and TNFα at transcriptional and protein levels. Then, the European sea bass juveniles were given intraperitoneal injections of the peptide. At 1, 3, 7, 14, and 21 days post-injection (dpi), IL-10, IL -1ß, and TNFα mRNA were quantified in the anterior gut, spleen, and head kidney. The hep20 was able to up-regulate cytokine gene expression in these tissues, mainly in the head kidney. Furthermore, the evaluated cytokines showed a cyclical tendency of higher to lesser expression. Finally, a bioinformatics analysis showed that the structure adopted by hep20 is similar to the γ-core domain described for cysteine-stabilized AMP, defined as immunomodulatory and antimicrobial, which could explain the ability of hep20 to regulate the cytokine expression. This study provides new insights into immunomodulatory function complementary to the previously established antimicrobial activity of hep20, suggesting a role as an HDP in teleost fish. These facts are likely to be associated with molecular functions underpinning the protective effect of fish hepcidin against pathogens.

5.
Vet Res Commun ; 41(2): 85-95, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28091882

RESUMEN

The surface-associated proteins play a key role in bacterial physiology and pathogenesis, and are the major targets in the development of new vaccines. These proteins contribute to the adaptation of bacteria to different hosts and environments. To study differences at the genomic level, we first sequenced the whole genome of Streptococcus iniae from fish (IUSA-1 strain) and compared it to Streptococcus iniae from human (9117 strain), revealing a high similitude between both strains. To gain further insights into host- and environment-specific differences, we then studied proteins in silico and by High Performance Liquid Chromatography. This approach successfully identified 54 secreted and surface proteins, including several proteins involved in cell wall synthesis and transport of solutes, as well as proteins with yet unknown function. These proteins highlight as interesting targets for further investigation in the interaction between Streptococcus iniae and its environment. Results reported in this study have shown a first analysis about the predicted and experimental associated proteins of Streptococcus iniae isolated from two different hosts: human and fish.


Asunto(s)
Streptococcus iniae/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cromatografía Líquida de Alta Presión/veterinaria , Simulación por Computador , Enfermedades de los Peces/microbiología , Peces/microbiología , Genoma Bacteriano/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus iniae/genética
6.
Fish Shellfish Immunol ; 55: 662-70, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27368538

RESUMEN

The generation of a variety of new therapeutic agents to control and reduce the effects of pathogen in aquaculture is urgently needed. The antimicrobial peptides (AMPs) are one of the major components of the innate defenses and typically have broad-spectrum antimicrobial activity. However, absorption and distributions of exogenous AMPs for therapeutics application on farmed fish species need to be studied. Previous studies in our laboratory have shown the properties of hepcidin as an effective antimicrobial peptide produced in fish in response to LPS and iron. Therefore, we decided to investigate the antimicrobial activity of four synthetic variants of hepcidin against Vibrio anguillarum in vitro, and using the more effective peptide we demonstrated the pathogen's ability to protect against the infection in European Sea bass. Additionally the uptake of this peptide after ip injection was demonstrated, reaching its distribution organs such as intestine, head kidney, spleen and liver. The synthetic peptide did not show cytotoxic effects and significantly reduced the accumulated mortalities percentage (23.5%) compared to the European Sea bass control (72.5%) at day 21. In conclusion, synthetic hepcidin shows antimicrobial activity against V. anguillarum and the in vivo experiments suggest that synthetic hepcidin was distributed trough the different organs in the fish. Thus, synthetic hepcidin antimicrobial peptide could have high potential for therapeutic application in farmed fish species.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Lubina , Enfermedades de los Peces/prevención & control , Proteínas de Peces/farmacología , Hepcidinas/farmacología , Vibriosis/veterinaria , Vibrio/efectos de los fármacos , Animales , Enfermedades de los Peces/microbiología , Vibriosis/microbiología , Vibriosis/prevención & control
7.
Vet Microbiol ; 174(1-2): 247-54, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25263496

RESUMEN

We describe for the first time the presence of pilus-like structures on the surface of Photobacterium damselae subsp. piscicida (Phdp). The hint to this discovery was the ability of one strain to hemagglutinate human erythrocytes. Further analysis of several Phdp strains ultrastructure by electron microscopy revealed the presence of long, thin fibers, similar to pili of other Gram-negative bacteria. These appendages were also observed and photographed by scanning, transmission electron microscopy and immunofluorescence. Although this fish pathogen has been described as non-motile, all strains tested exhibit twitching motility, a flagella-independent type IV-dependent form of bacterial translocation over surfaces. As far as we are aware, the movement of Phdp bacteria on semi-solid or solid surfaces has not been described previously. Moreover, we speculate that Phdp twitching motility may be involved in biofilm formation. Microscopic examination of Phdp biofilms by microscopy revealed that Phdp biofilm architecture display extensive cellular chaining and also bacterial mortality during biofilm formation in vitro. Based on our results, standardized analyses of Phdp surface appendages, biofilms, motility and their impact on Phdp survival, ecology and pathobiology are now feasible.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/fisiología , Peces/microbiología , Photobacterium/fisiología , Animales , Fimbrias Bacterianas/ultraestructura , Técnica del Anticuerpo Fluorescente/veterinaria , Pruebas de Hemaglutinación/veterinaria , Humanos , Microscopía Confocal/veterinaria , Microscopía Electrónica de Rastreo/veterinaria , Microscopía Electrónica de Transmisión/veterinaria , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...