Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 11: 976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982771

RESUMEN

p53 regulates the cellular response to genotoxic damage and prevents carcinogenic events. Theoretical and experimental studies state that the p53-Mdm2 network constitutes the core module of regulatory interactions activated by cellular stress induced by a variety of signaling pathways. In this paper, a strategy to control the p53-Mdm2 network regulated by p14ARF is developed, based on the pinning control technique, which consists into applying local feedback controllers to a small number of nodes (pinned ones) in the network. Pinned nodes are selected on the basis of their importance level in a topological hierarchy, their degree of connectivity within the network, and the biological role they perform. In this paper, two cases are considered. For the first case, the oscillatory pattern under gamma-radiation is recovered; afterward, as the second case, increased expression of p53 level is taken into account. For both cases, the control law is applied to p14ARF (pinned node based on a virtual leader methodology), and overexpressed Mdm2-mediated p53 degradation condition is considered as carcinogenic initial behavior. The approach in this paper uses a computational algorithm, which opens an alternative path to understand the cellular responses to stress, doing it possible to model and control the gene regulatory network dynamics in two different biological contexts. As the main result of the proposed control technique, the two mentioned desired behaviors are obtained.

2.
IEEE Trans Neural Netw Learn Syst ; 31(3): 854-864, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31056527

RESUMEN

A new approach for trajectory tracking on uncertain complex networks is proposed. To achieve this goal, a neural controller is applied to a small fraction of nodes (pinned ones). Such controller is composed of an on-line identifier based on a recurrent high-order neural network, and an inverse optimal controller to track the desired trajectory; a complete stability analysis is also included. In order to verify the applicability and good performance of the proposed control scheme, a representative example is simulated, which consists of a complex network with each node described by a chaotic Lorenz oscillator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...