Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 7594, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372047

RESUMEN

Organic photodiodes (OPDs) for its interesting optoelectronic properties has the potential to be utilized with complementary metal-oxide-semiconductor (CMOS) circuit for imaging, automotive, and security based applications. To achieve such a hybrid device as an image sensor, it is imperative that the quality of the OPD remains high on the CMOS substrate and that it has a well-connected optoelectronic interface with the underneath readout integrated circuit (ROIC) for efficient photogeneration and signal readout. Here, we demonstrate seamless integration of a thermally deposited visible light sensitive small molecule OPD on a standard commercial CMOS substrate using optimized doped PCBM buffer layer. Under a standard power supply voltage of 3 V, this hybrid device shows an excellent photolinearity in the entire bias regime, a high pixel sensitivity of 2 V/Lux.sec, a dynamic range (DR) of 71 dB, and a low dark leakage current density of 1 nA/cm2. Moreover, the integrated OPD has a minimum bandwidth of 400 kHz. The photoresponse nonuniformity being only 1.7%, achieved under research lab conditions, strengthens the notion that this fully-CMOS compatible technology has the potential to be applied in high-performance large-scale imaging array.

2.
Sensors (Basel) ; 20(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935884

RESUMEN

We developed a new 2.5 µm global shutter (GS) pixel using a 65 nm process with an advanced light pipe (LP) structure. This is the world's smallest charge domain GS pixel reported so far. This new developed pixel platform is a key enabler for ultra-high resolution sensors, industrial cameras with wide aperture lenses, and low form factors optical modules for mobile applications. The 2.5 µm GS pixel showed excellent optical performances: 68% quantum efficiency (QE) at 530 nm, ±12.5 degrees angular response (AR), and quite low parasitic light sensitivity (PLS)-10,400 1/PLS with the F#2.8 lens. In addition, we achieved an extremely low memory node (MN) dark current 13 e-/s at 60 °C by fully pinned MN. Furthermore, we studied how the LP technology contributes to the improvement of the modulation transfer function (MTF) in near infrared (NIR) enhanced GS pixel. The 2.8 µm GS pixel using a p-substrate showed 109 lp/mm MTF@50% at 940 nm, which is 1.6 times better than that without an LP. The MTF can be more enhanced by the combination of the LP and the deep photodiode (PD) electrically isolated from the substrate. We demonstrated the advantage of using LP technology and our advanced stacked deep photodiode (SDP) technology together. This unique combination showed an improvement of more than 100% in NIR QE while maintaining an MTF that is close to the theoretical Nyquist limit (MTF @50% = 156 lp/mm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...