Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832421

RESUMEN

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Niño , Ensayos Clínicos como Asunto , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral/inmunología , Animales
2.
J Hematol Oncol ; 17(1): 50, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937803

RESUMEN

BACKGROUND: Relapse remains a challenge after transplantation in pediatric patients with hematological malignancies. Myeloablative regimens used for disease control are associated with acute and long-term adverse effects. We used a CD45RA-depleted haploidentical graft for adoptive transfer of memory T cells combined with NK-cell addback and hypothesized that maximizing the graft-versus-leukemia (GVL) effect might allow for reduction in intensity of conditioning regimen. METHODS: In this phase II clinical trial (NCT01807611), 72 patients with hematological malignancies (complete remission (CR)1: 25, ≥ CR2: 28, refractory disease: 19) received haploidentical CD34 + enriched and CD45RA-depleted hematopoietic progenitor cell grafts followed by NK-cell infusion. Conditioning included fludarabine, thiotepa, melphalan, cyclophosphamide, total lymphoid irradiation, and graft-versus-host disease (GVHD) prophylaxis consisted of a short-course sirolimus or mycophenolate mofetil without serotherapy. RESULTS: The 3-year overall survival (OS) and event-free-survival (EFS) for patients in CR1 were 92% (95% CI:72-98) and 88% (95% CI: 67-96); ≥ CR2 were 81% (95% CI: 61-92) and 68% (95% CI: 47-82) and refractory disease were 32% (95% CI: 11-54) and 20% (95% CI: 6-40). The 3-year EFS for all patients in morphological CR was 77% (95% CI: 64-87) with no difference amongst recipients with or without minimal residual disease (P = 0.2992). Immune reconstitution was rapid, with mean CD3 and CD4 T-cell counts of 410/µL and 140/µL at day + 30. Cumulative incidence of acute GVHD and chronic GVHD was 36% and 26% but most patients with acute GVHD recovered rapidly with therapy. Lower rates of grade III-IV acute GVHD were observed with NK-cell alloreactive donors (P = 0.004), and higher rates of moderate/severe chronic GVHD occurred with maternal donors (P = 0.035). CONCLUSION: The combination of a CD45RA-depleted graft and NK-cell addback led to robust immune reconstitution maximizing the GVL effect and allowed for use of a submyeloablative, TBI-free conditioning regimen that was associated with excellent EFS resulting in promising long-term outcomes in this high-risk population. The trial is registered at ClinicalTrials.gov (NCT01807611).


Asunto(s)
Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Células T de Memoria , Acondicionamiento Pretrasplante , Trasplante Haploidéntico , Humanos , Femenino , Masculino , Células Asesinas Naturales/trasplante , Células Asesinas Naturales/inmunología , Niño , Adolescente , Trasplante Haploidéntico/métodos , Preescolar , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Acondicionamiento Pretrasplante/métodos , Neoplasias Hematológicas/terapia , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/etiología , Lactante , Adulto Joven , Adulto , Resultado del Tratamiento , Efecto Injerto vs Leucemia
3.
Cell Rep Med ; 5(2): 101422, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38350450

RESUMEN

The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123). To achieve this, we test linkers with varying length and flexibility and perform immunophenotypic and functional characterization. We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed. Protein structure prediction suggests that linker length and compactness influence the functionality of the generated bispecific CARs. Thus, we present a bispecific CAR design strategy to prevent immune escape in AML that can be extended to other peptide-scFv combinations.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Chaperón BiP del Retículo Endoplásmico , Receptores Quiméricos de Antígenos/metabolismo , Leucemia Mieloide Aguda/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38376473

RESUMEN

Summary: Background. Patch testing (PT) is used to identify substances that cause allergic contact dermatitis (ACD). However, the clinical effects of allergen restrictions following PT have not been thoroughly investigated. This study aims to assess the diagnostic accuracy of PT in patients suspected of having ACD. Methods. Prospective study. PT were performed in patients with clinical diagnosis of ACD. Patients with a positive PT (case group) had a strict restriction of the suspected substance for one month. In patients with negative patch testing (control group), allergen restriction was based in clinical history. Clinical reduction (CR) of at least 50% in disease activity (CR50%) after one month of allergen restriction was considered clinically relevant. Total control was defined as clinical reduction of at least 90% (CR90%). Results. From 400 patients, 66.2% had a positive PT. The sensitivity of PT to identify CR50% was 84%, specificity 47%, PPV 53%, and NPV 81%. Only 10.5% of patients achieved CR90%. Conclusions. The PT had moderate diagnostic accuracy. It could be useful as a screening, but a positive result should be confirmed with controlled allergen restriction. The low number of patients who achieved a 90% CR invites to reconsider the allergens included in PT and the mechanistic processes of the disease.

5.
Cell Rep Med ; 4(11): 101297, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992682

RESUMEN

Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Humanos , Chaperón BiP del Retículo Endoplásmico , Glucosa , Linfocitos T , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neoplasias Encefálicas/terapia
6.
Biomarkers ; 28(7): 599-607, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667642

RESUMEN

BACKGROUND: Chagas disease (CD) is considered by the World Health Organisation (WHO) a neglected disease endemic to the Americas, but it has spread throughout the world due to migrations. The disease is almost 100% curable if detected in time. Still, the lack of rapid diagnostic tests with sufficient sensitivity and specificity leads to a chronic phase with a mortality of about 50,000 people worldwide per year. METHODS: Using the total proteins extracted from serum samples of patients confirmed with chronic phase CD; we performed the Bio-SELEX strategy. The best aptamers were selected using next-generation sequencing (NGS) based on their most abundant sequences (reads and rpm). Then, selected aptamers were used to isolate potential biomarkers directly from serum samples of patients with chronic phase CD using pull-down and mass spectrometry experiments. RESULTS: CH1 aptamer was the aptamer selected after the NGS results analysis. The pull-down and mass spectrometry experiments identified the presence of the ATPase alpha subunit of T. cruzi circulating in serum samples of patients with chronic phase CD. CONCLUSIONS: We report the ATPase alpha subunit of T. cruzi as a potential biomarker for chronic phase CD and CH1 aptamer as a potential tool for diagnosing CD.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Adenosina Trifosfatasas , Enfermedad de Chagas/diagnóstico , Sensibilidad y Especificidad , Biomarcadores
7.
Cell Rep ; 42(7): 112804, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453060

RESUMEN

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin ß1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/ß-catenin-mediated EMT-like program. Blockade of interaction between ß-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/ß-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.


Asunto(s)
Transición Epitelial-Mesenquimal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , beta Catenina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Técnicas de Cocultivo , Resistencia a Medicamentos , Proliferación Celular , Microambiente Tumoral
10.
Haematologica ; 108(4): 1039-1052, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35899386

RESUMEN

The outcome of patients with acute myeloid leukemia remains poor, and immunotherapy has the potential to improve this. T cells expressing chimeric antigen receptors or bispecific T-cell engagers targeting CD123 are actively being explored in preclinical and/or early phase clinical studies. We have shown that T cells expressing CD123-specific bispecific T-cell engagers (CD123.ENG T cells) have anti-acute myeloid leukemia activity. However, like chimeric antigen receptor T cells, their effector function diminishes rapidly once they are repeatedly exposed to antigen-positive target cells. Here we sought to improve the effector function of CD123.ENG T cells by expressing inducible co-stimulatory molecules consisting of MyD88 and CD40 (iMC), MyD88 (iM), or CD40 (iC), which are activated by a chemical inducer of dimerization. CD123.ENG T cells expressing iMC, iM, or iC maintained their antigen specificity in the presence of a chemical inducer of dimerization, as judged by cytokine production (interferon-γ, interleukin-2) and their cytolytic activity. In repeat stimulation assays, activating iMC and iM, in contrast to iC, enabled CD123.ENG T cells to secrete cytokines, expand, and kill CD123-positive target cells repeatedly. Activating iMC in CD123.ENG T cells consistently improved antitumor activity in an acute myeloid leukemia xenograft model. This translated into a significant survival advantage in comparison to that of mice that received CD123.ENG or CD123.ENG.iC T cells. In contrast, activation of only iM in CD123.ENG T cells resulted in donor-dependent antitumor activity. Our work highlights the need for both toll-like receptor pathway activation via MyD88 and provision of co-stimulation via CD40 to consistently enhance the antitumor activity of CD123.ENG T cells.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T , Animales , Humanos , Ratones , Línea Celular Tumoral , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Linfocitos T/metabolismo , Antígenos CD40/metabolismo
11.
Gene Ther ; 30(3-4): 222-231, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997202

RESUMEN

Autologous chimeric antigen receptor (CAR) T cells targeting the CD19 antigen have demonstrated a high complete response rate in relapsed/refractory B-cell malignancies. However, autologous CAR T cell therapy is not an option for all patients. Here we optimized conditions for clinical-grade manufacturing of allogeneic CD19-CAR T cells using CD45RA-depleted donor memory T cells (Tm) for a planned clinical trial. Tm were activated using the MACS GMP T Cell TransAct reagent and transduced in the presence of LentiBOOST with a clinical-grade lentiviral vector that encodes a 2nd generation CD19-CAR with a 41BB.zeta endodomain. Transduced T cells were transferred to a G-Rex cell culture device for expansion and harvested on day 7 or 8 for cryopreservation. The resulting CD19-CAR(Mem) T cells expanded on average 34.2-fold, and mean CAR expression was 45.5%. The majority of T cells were CD4+ and had a central memory or effector memory phenotype, and retained viral specificity. CD19-CAR(Mem) T cells recognized and killed CD19-positive target cells in vitro and had potent antitumor activity in an ALL xenograft model. Thus we have successfully developed a current good manufacturing practice-compliant process to manufacture donor-derived CD19-CAR(Mem) T cells. Our manufacturing process could be readily adapted for CAR(Mem) T cells targeting other antigens.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Antígenos CD19/genética , Inmunoterapia Adoptiva/métodos , Linfocitos T , GMP Cíclico/metabolismo
12.
Blood ; 140(25): 2684-2696, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35914226

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy targeting T-cell acute lymphoblastic leukemia (T-ALL) faces limitations such as antigen selection and limited T-cell persistence. CD7 is an attractive antigen for targeting T-ALL, but overlapping expression on healthy T cells leads to fratricide of CD7-CAR T cells, requiring additional genetic modification. We took advantage of naturally occurring CD7- T cells to generate CD7-CAR (CD7-CARCD7-) T cells. CD7-CARCD7- T cells exhibited a predominantly CD4+ memory phenotype and had significant antitumor activity upon chronic antigen exposure in vitro and in xenograft mouse models. Based on these encouraging results, we next explored the utility of CD7- T cells for the immunotherapy of CD19+ hematological malignancies. Direct comparison of nonselected (bulk) CD19-CAR and CD19-CARCD7- T cells revealed that CD19-CARCD7- T cells had enhanced antitumor activity compared with their bulk counterparts in vitro and in vivo. Lastly, to gain insight into the behavior of CD19-CAR T cells with low levels of CD7 gene expression (CD7lo) in humans, we mined single-cell gene and T-cell receptor (TCR) expression data sets from our institutional CD19-CAR T-cell clinical study. CD19-CARCD7lo T cells were present in the initial CD19-CAR T-cell product and could be detected postinfusion. Intriguingly, the only functional CD4+ CD19-CAR T-cell cluster observed postinfusion exhibited CD7lo expression. Additionally, samples from patients responsive to therapy had a higher proportion of CD7lo T cells than nonresponders (NCT03573700). Thus, CARCD7- T cells have favorable biological characteristics and may present a promising T-cell subset for adoptive cell therapy of T-ALL and other hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Ratones , Animales , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias Hematológicas/terapia , Inmunoterapia , Antígenos CD19
14.
Cancer Discov ; 12(9): 2098-2119, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35792801

RESUMEN

Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE: Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo
15.
Front Immunol ; 13: 867103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401520

RESUMEN

In recent years, there has been an emphasis on harnessing the immune system for therapeutic interventions. Adoptive cell therapies (ACT) have emerged as an effective option for B-cell derived hematological malignancies. Despite remarkable successes with ACT, immune dysregulation and the leukemia microenvironment can critically alter clinical responses. Therefore, preclinical modeling can contribute to the advancement of ACT for leukemias. Human xenografts, the current mainstay of ACT in vivo models, cannot evaluate the impact of the immunosuppressive leukemia microenvironment on adoptively transferred cells. Syngeneic mouse models utilize murine tumor models and implant them into immunocompetent mice. This provides an alternative model, reducing the need for complicated breeding strategies while maintaining a matched immune system, stromal compartment, and leukemia burden. Syngeneic models that evaluate ACT have analyzed the complexity of cytotoxic T lymphocytes, T cell receptor transgenics, and chimeric antigen receptors. This review examines the immunosuppressive features of the leukemia microenvironment, discusses how preclinical modeling helps predict ACT associated toxicities and dysfunction, and explores publications that have employed syngeneic modeling in ACT studies for the improvement of therapy for leukemias.


Asunto(s)
Leucemia , Receptores Quiméricos de Antígenos , Animales , Humanos , Inmunosupresores , Inmunoterapia Adoptiva , Leucemia/terapia , Ratones , Linfocitos T Citotóxicos , Microambiente Tumoral
16.
Blood Adv ; 6(21): 5737-5749, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35446934

RESUMEN

T cells expressing CD19-specific chimeric antigen receptors (CD19-CARs) have potent antileukemia activity in pediatric and adult patients with relapsed and/or refractory B-cell acute lymphoblastic leukemia (B-ALL). However, not all patients achieve a complete response (CR), and a significant percentage relapse after CD19-CAR T-cell therapy due to T-cell intrinsic and/or extrinsic mechanisms. Thus, there is a need to evaluate new CD19-CAR T-cell products in patients to improve efficacy. We developed a phase 1/2 clinical study to evaluate an institutional autologous CD19-CAR T-cell product in pediatric patients with relapsed/refractory B-ALL. Here we report the outcome of the phase 1 study participants (n = 12). Treatment was well tolerated, with a low incidence of both cytokine release syndrome (any grade, n = 6) and neurotoxicity (any grade, n = 3). Nine out of 12 patients (75%) achieved a minimal residual disease-negative CR in the bone marrow (BM). High disease burden (≥40% morphologic blasts) before CAR T-cell infusion correlated with increased side effects and lower response rate, but not with CD19-CAR T-cell expansion. After infusion, CD8+ CAR T cells had a proliferative advantage over CD4+ CAR T cells and at peak expansion, had an effector memory phenotype with evidence of antigen-driven differentiation. Patients that proceeded to allogeneic hematopoietic cell transplantation (AlloHCT) had sustained, durable responses. In summary, the initial evaluation of our institutional CD19-CAR T-cell product demonstrates safety and efficacy while highlighting the impact of pre-infusion disease burden on outcomes. This trial was registered at www.clinicaltrials.gov as #NCT03573700.


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD19 , Linfocitos T CD8-positivos , Costo de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T
17.
Nat Commun ; 13(1): 587, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102167

RESUMEN

Developing CAR T cells for acute myeloid leukemia (AML) has been hampered by a paucity of targets that are expressed on AML blasts and not on hematopoietic progenitor cells (HPCs). Here we demonstrate that GRP78 is expressed on the cell surface of primary AML blasts but not HPCs. To target GRP78, we generate T cell expressing a GRP78-specific peptide-based CAR, which show evidence of minimal fratricide post activation/transduction and antigen-dependent T cell differentiation. GRP78-CAR T cells recognize and kill GRP78-positive AML cells without toxicity to HPCs. In vivo, GRP78-CAR T cells have significant anti-AML activity. To prevent antigen-dependent T cell differentiation, we block CAR signaling and GRP78 cell surface expression post activation by using dasatinib during GRP78-CAR T cell manufacturing. This significantly improves their effector function in vitro and in vivo. Thus, targeting cell surface GRP78-positive AML with CAR T cells is feasible, and warrants further active exploration.


Asunto(s)
Membrana Celular/metabolismo , Chaperón BiP del Retículo Endoplásmico/inmunología , Células Madre Hematopoyéticas/inmunología , Leucemia Mieloide Aguda/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Dasatinib/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/genética , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Blood Cancer Discov ; 2(6): 559-561, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35015677

RESUMEN

Ideal targets for chimeric antigen receptor T-cell therapy for acute myeloid leukemia (AML) remain elusive. In this issue of Blood Cancer Discovery, Richards and colleagues explore CD93 as a potential AML target antigen, and devise an approach to mitigate "on-target/off-cancer toxicity."See related article by Richards et al., p. 648.

19.
Med Intensiva (Engl Ed) ; 45(4): 195-204, 2021 May.
Artículo en Inglés, Español | MEDLINE | ID: mdl-31826812

RESUMEN

INTRODUCTION: Acute respiratory failure is the leading cause of hospitalization in pediatrics. High-flow nasal cannulas (HFNCs) offer a new alternative, but the evidence and indications are still debated. The performance of HFNCs at high altitude has not been described to date. OBJECTIVE: To describe the use of HFNCs in pediatric patients admitted with respiratory failure and explore the factors associated with treatment failure. METHODOLOGY: A prospective cohort study was carried out in patients between 1 month and 18 years of age managed with HFNCs. The demographic and treatment response data were recorded at baseline and after 1, 6 and 24hours. The number of failures was determined, as well as the length of stay, complications and mortality. Patients with treatment failure were compared with the rest. RESULTS: A total of 539 patients were enrolled. Infants (70.9%) of male sex (58.4%) and airway diseases such as asthma and bronchiolitis (61.2%) were more frequent. There were 53 failures (9.8%), with 21 occurring in the first 24hours. The median length of stay was 4 days (IQR 4); there were 5 deaths (0.9%) and 13 adverse events (epistaxis) (2.2%). Improvement was observed in vital signs and severity over time, with differences in the group that failed, but without interactions. The final logistic model established an independent relationship of failure between the hospital (OR 2.78, 95%CI 1.48-5.21) and the initial respiratory rate (OR 1.56, 95%CI 1.21-2.01). CONCLUSIONS: HFNCs afford good clinical response, with few complications and a low failure rate. The differences found between institutions suggest a subjective relationship in the decision of therapy failure.

20.
Front Oncol ; 10: 262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185132

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...