Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9261, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649720

RESUMEN

We report on an all-fiber setup capable of generating complex intensity patterns using interference of few guided modes. Comprised by a few-mode fiber (FMF) spliced to a multimodal interference (MMI) fiber device, the setup allows for obtaining different output patterns upon adjusting the phases and intensities of the modes propagating in the FMF. We analyze the output patterns obtained when exciting two family modes in the MMI device using different phase and intensity conditions for the FMF modal base. Using this simple experimental arrangement we are able to produce complex intensity patterns with radial and azimuthal symmetry. Moreover, our results suggest that this approach provides a means to generate beams with orbital angular momentum (OAM).

2.
Appl Opt ; 61(1): 135-140, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200812

RESUMEN

The transmission properties of a photonic crystal immersed in several different oils have been characterized using terahertz time domain spectroscopy in the spectral range of 0.3-1.5 THz. As in previous works, oil samples can be distinguished using terahertz transmission measurements. When the same oils are introduced into a photonic crystal, we find that the effective refractive index of the photonic crystal is sensitive to the properties of the oils and shows differences not seen in bulk measurements. These effects are described in detail and have potential applications in both the sensing of very small volumes of oils and in the fine control of the refractive indices of photonic crystals.

3.
Opt Lett ; 47(21): 5569-5572, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219270

RESUMEN

We report on a simple fabrication technique for Fabry-Perot (FP) sensors formed by a microbubble within a polymer drop deposited on the tip of an optical fiber. Polydimethylsiloxane (PDMS) drops are deposited on the tips of standard single-mode fibers incorporating a layer of carbon nanoparticles (CNPs). A microbubble inside this polymer end-cap, aligned along the fiber core, can be readily generated on launching light from a laser diode through the fiber, owing to the photothermal effect produced in the CNP layer. This approach allows for the fabrication of microbubble end-capped FP sensors with reproducible performance, showing temperature sensitivities as large as 790 pm/°C, larger than those reported for regular polymer end-capped devices. We further show that these microbubble FP sensors may also prove useful for displacement measurements, with a sensitivity of ∼5.4 nm/µm.

4.
Opt Lett ; 45(21): 6030-6033, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137061

RESUMEN

We demonstrate tunable microring resonators (TMRs) based on light-activated functional polymer coatings deposited on glass optical fibers. TMRs were fabricated using two layers of polydimethylsiloxane-based compounds: one incorporating an azobenzene dye and one using a fluorescent ytterbium and erbium-doped sodium yttrium fluoride powder. The latter yields a photoluminescent composite producing green up-conversion emission under infrared pumping. This visible emission triggers photoinduced birefringence effects in the azobenzene layer, thereby modifying the spectral features of the TMR devices. The shift in the resonance peaks as a function of pump power is linear, yielding a tuning range of 1.3 nm. Aside from the observed photoinduced effects, we also discuss the photothermal effects involved in the tuning mechanism.

5.
Sci Rep ; 8(1): 8897, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891993

RESUMEN

We present a new technique allowing the fabrication of large modal count photonic lanterns for space-division multiplexing applications. We demonstrate mode-selective photonic lanterns supporting 10 and 15 spatial channels by using graded-index fibres and microstructured templates. These templates are a versatile approach to position the graded-index fibres in the required geometry for efficient mode sampling and conversion. Thus, providing an effective scalable method for large number of spatial modes in a repeatable manner. Further, we demonstrate the efficiency and functionality of our photonic lanterns for optical communications. Our results show low insertion and mode dependent losses, as well as enhanced mode selectivity when spliced to few mode transmission fibres. These photonic lantern mode multiplexers are an enabling technology for future ultra-high capacity optical transmission systems.

6.
Opt Lett ; 43(6): 1303-1306, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543277

RESUMEN

We demonstrate a simple approach based on a photonic lantern spatial-mode multiplexer and a few-mode fiber for optical and manipulation of multiple microspheres. Selective generation of linearly polarized (LP) fiber modes provides light patterns useful for trapping one or multiple microparticles. Furthermore, rotation of the particles can be achieved by switching between degenerate LP modes, as well as through polarization rotation of the input light. Our results show that emerging fiber optic devices such as photonic lanterns can provide a versatile and compact means for developing optical fiber traps.

7.
Polymers (Basel) ; 8(4)2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-30979195

RESUMEN

The advent of nanotechnology has triggered novel developments and applications for polymer-based membranes with embedded or coated nanoparticles. As an example, interaction of laser radiation with metallic and carbon nanoparticles has shown to provide optically triggered responses in otherwise transparent media. Incorporation of these materials inside polymers has led to generation of plasmonic and photothermal effects through the enhanced optical absorption of these polymer composites. In this work, we focus on the photothermal effects produced in polydimethylsiloxane (PDMS) membranes with embedded carbon nanoparticles via light absorption. Relevant physical parameters of these composites, such as nanoparticle concentration, density, geometry and dimensions, are used to analyze the photothermal features of the membranes. In particular, we analyze the heat generation and conduction in the membranes, showing that different effects can be achieved and controlled depending on the physical and thermal properties of the composite material. Several novel applications of these light responsive membranes are also demonstrated, including low-power laser-assisted micro-patterning and optomechanical deformation. Furthermore, we show that these polymer-nanoparticle composites can also be used as coatings in photonic and microfluidic applications, thereby offering an attractive platform for developing light-activated photonic and optofluidic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...