Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 8(8): bvae130, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39011323

RESUMEN

Context: Multiple common genetic variants have been associated with type 2 diabetes, but the mechanism by which they predispose to diabetes is incompletely understood. One such example is variation in MTNR1B, which implicates melatonin and its receptor in the pathogenesis of type 2 diabetes. Objective: To characterize the effect of diabetes-associated genetic variation at rs10830963 in the MTNR1B locus on islet function in people without type 2 diabetes. Design: The association of genetic variation at rs10830963 with glucose, insulin, C-peptide, glucagon, and indices of insulin secretion and action were tested in a cohort of 294 individuals who had previously undergone an oral glucose tolerance test (OGTT). Insulin sensitivity, ß-cell responsivity to glucose, and Disposition Indices were measured using the oral minimal model. Setting: The Clinical Research and Translation Unit at Mayo Clinic, Rochester, MN. Participants: Two cohorts were utilized for this analysis: 1 cohort was recruited on the basis of prior participation in a population-based study in Olmsted County. The other cohort was recruited on the basis of TCF7L2 genotype at rs7903146 from the Mayo Biobank. Intervention: Two-hour, 7-sample OGTT. Main Outcome Measures: Fasting, nadir, and integrated glucagon concentrations. Results: One or 2 copies of the G-allele at rs10830963 were associated with increased postchallenge glucose and glucagon concentrations compared to subjects with the CC genotype. Conclusion: The effects of rs10830963 on glucose homeostasis and predisposition to type 2 diabetes are likely to be partially mediated through changes in α-cell function.

2.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751301

RESUMEN

BACKGROUNDProglucagon can be processed to glucagon-like peptide1 (GLP-1) within the islet, but its contribution to islet function in humans remains unknown. We sought to understand whether pancreatic GLP-1 alters islet function in humans and whether this is affected by type 2 diabetes.METHODSWe therefore studied individuals with and without type 2 diabetes on two occasions in random order. On one occasion, exendin 9-39, a competitive antagonist of the GLP-1 Receptor (GLP1R), was infused, while on the other, saline was infused. The tracer dilution technique ([3-3H] glucose) was used to measure glucose turnover during fasting and during a hyperglycemic clamp.RESULTSExendin 9-39 increased fasting glucose concentrations; fasting islet hormone concentrations were unchanged, but inappropriate for the higher fasting glucose observed. In people with type 2 diabetes, fasting glucagon concentrations were markedly elevated and persisted despite hyperglycemia. This impaired suppression of endogenous glucose production by hyperglycemia.CONCLUSIONThese data show that GLP1R blockade impairs islet function, implying that intra-islet GLP1R activation alters islet responses to glucose and does so to a greater degree in people with type 2 diabetes.TRIAL REGISTRATIONThis study was registered at ClinicalTrials.gov NCT04466618.FUNDINGThe study was primarily funded by NIH NIDDK DK126206. AV is supported by DK78646, DK116231 and DK126206. CDM was supported by MIUR (Italian Minister for Education) under the initiative "Departments of Excellence" (Law 232/2016).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...