Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098135

RESUMEN

Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.


Asunto(s)
Frankia , Magnoliopsida , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base
2.
Artículo en Inglés | MEDLINE | ID: mdl-37351943

RESUMEN

Frankia strain Ag45/Mut15T was isolated from a root nodule of Alnus glutinosa growing in a swamp at lake Grossensee, Germany. The strain forms root nodules on A. glutinosa, in which it produces hyphae and clusters of N2-fixing vesicles. N2-fixing vesicles are also produced in nitrogen-free growth medium, in addition to hyphae and sporangia. The whole-cell hydrolysates of strain Ag45/Mut15T contained meso-diaminopimelic acid in the peptidoglycan and ribose, xylose, mannose, glucose, galactose and a trace of rhamnose as cell-wall sugars. The major polar lipids were phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and glyco-phospholipid. The predominant (>20 %) menaquinones were MK-9(H6) and MK-9(H4). The major fatty acid profile (>10 %) consisted of iso-C16:0, C17 : 1 ω8c and C17 : 0. Pairwise 16S rRNA gene distances showed that strain Ag45/Mut15T was most closely related to Frankia torreyi CpI1T and Candidatus Frankia nodulisporulans with 16S rRNA gene similarity values of 0.001335 substitutions per site. An multilocus sequence analysis phylogeny based on atpD, dnaA, ftsZ, pgk and rpoB amino acid sequences positioned the strain within cluster 1 of Alnus- and Myrica-nodulating species, close to Candidatus F. nodulisporulans AgTrST and F. canadensis ARgP5T. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the studied strain Ag45/Mut15T and all validly named Frankia species were below the defined threshold for prokaryotic species demarcation. Candidatus F. nodulisporulans AgTrST, which cannot be cultivated in vitro, was found to be the closest phylogenetic neighbour to strain strain Ag45/Mut15T with dDDH and ANI values of 61.8 and 97 %, respectively. Strain Ag45/Mut15T was not able to sporulate in nodule tissues like strain AgTrST.Phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain Ag45/Mut15T (=DSM 114737T=LMG 326O1T) to a novel species, with Ag45/Mut15T as type strain, for which the name Frankia umida sp. nov. is proposed.


Asunto(s)
Alnus , Frankia , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Vitamina K 2/química
3.
J Genomics ; 11: 1-8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36594039

RESUMEN

The genomes of two nitrogen-fixing Frankia strains, AiPa1 and AiPs1, are described as representatives of two novel candidate species. Both strains were isolated from root nodules of Alnus incana, used as capture plants in bioassays on soils from a reforested site at Karttula, Finland, that was devoid of actinorhizal plants but contained 25 year-old monocultures of spruce (Picea abies (L.) Karsten) or pine (Pinus sylvestris L.), respectively. ANI analyses indicate that each strain represents a novel Frankia species, with genome sizes of 6.98 and 7.35 Mb for AiPa1 and AiPs1, respectively. Both genomes harbored genes typical for many other symbiotic frankiae, including genes essential for nitrogen-fixation, for synthesis of hopanoid lipids and iron-sulfur clusters, as well as clusters of orthologous genes, secondary metabolite determinants and transcriptional regulators. Genomes of AiPa1 and AiPs1 had lost 475 and 112 genes, respectively, compared to those of other cultivated Alnus-infective strains with large genomes. Lost genes included one hup cluster in AiPa1 and the gvp cluster in AiPs1, suggesting that some genome erosion has started to occur in a different manner in the two strains.

4.
Microbiol Resour Announc ; 11(11): e0092522, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36287069

RESUMEN

The Frankia sp. strain R82 genome is described as representative of a novel candidate species within Frankia cluster 1, as indicated by average nucleotide identity (ANI) analyses, with its closest relatives being Frankia nodulisporulans AgTrs and strains Ag45/Mut15 and AgPM24 (86% identity).

5.
J Genomics ; 10: 61-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979511

RESUMEN

The genomes of two nitrogen-fixing Frankia strains, AgB32 and AgKG'84/4, were isolated from spore-containing (spore+) and spore-free (spore-) root nodules of Alnus glutinosa, but they did not sporulate upon reinfection. The two strains are described as representatives of two novel candidate species. Phylogenomic and ANI analyses indicate that each strain represents a novel species within cluster 1, with genome sizes of 6.3 and 6.7 Mb smaller than or similar to those of other cultivated Alnus-infective cluster 1 strains. Genes essential for nitrogen-fixation, clusters of orthologous genes, secondary metabolite clusters and transcriptional regulators analyzed by comparative genomic analyses were typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. Compared to other cultivated Alnus-infective strains with large genomes, those of AgB32 and AgKG'84/4 had lost 380 or 409 genes, among which one hup cluster, one shc gene and the gvp cluster, which indicates genome erosion is taking place in these two strains.

6.
J Genomics ; 10: 49-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707396

RESUMEN

The genomes of two nitrogen-fixing Frankia strains, Ag45/Mut15 and AgPM24, isolated from root nodules of Alnus glutinosa are described as representatives of a novel candidate species. Phylogenomic and ANI analyses confirmed that both strains are related to cluster 1 frankiae, and that both strains belong to a novel species. At 6.4 - 6.7 Mb, their genomes were smaller than those of other cultivated Alnus-infective cluster 1 strains but larger than that of the non-cultivated Alnus-infective cluster 1 Sp+ strain AgTrS that was their closest neighbor as assessed by ANI. Comparative genomic analyses identified genes essential for nitrogen-fixation, gene composition as regards COGs, secondary metabolites clusters and transcriptional regulators typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. There were 459 genes present in other cultivated Alnus-infective strains lost in the two genomes, spread over the whole of the genome, which indicates genome erosion is taking place in these two strains.

7.
Syst Appl Microbiol ; 45(4): 126342, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35750008

RESUMEN

Illumina-based 16S rRNA V3 amplicon sequencing of total DNA obtained from soft tissue lesions (joint granulomas) of the endangered Houston toad (Anaxyrus houstonensis) demonstrated that many reads represented members of the actinobacterial Mycobacterium chelonae-abscessus complex. In order to quantify members of this complex in those lesions, we designed three complex-specific primer set/probe combinations (sets I, II and III) targeting variable regions on the 23S rRNA gene for SybrGreen- and Taqman-based quantitative polymerase chain reaction (qPCR). Both SybrGreen- and Taqman-based analyses specifically detected members of the M. chelonae-abscessus complex in lesion samples, with numbers between 104 and 107 cells per 100-mg sample. Values within individual samples were generally comparable between SybrGreen- and Taqman-based detection methods and between all primer set/probe combinations, except for SybrGreen-based analyses of a few samples analyzed with primer set I that used a less specific forward primer. The development of highly specific detection and quantification methods for members of the M. chelonae-abscessus complex in lesion samples can enable group specific tracking of these organisms, particularly in captive or stewardship settings where source and transmission monitoring are valuable tools to husbandry and species conservation.


Asunto(s)
Mycobacterium abscessus , Mycobacterium chelonae , Mycobacterium abscessus/genética , Mycobacterium chelonae/genética , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética
8.
FEMS Microbiol Ecol ; 98(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35170731

RESUMEN

The effect of host plants on the abundance and distribution of introduced and indigenous Frankia populations was assessed in soils and root nodules of four alder species, Alnus glutinosa,Alnus cordata,Alnus rubra and Alnus viridis. Plants were grown in microcosms with either a sandy soil without detectable frankiae, with or without inoculation of a mixture of Frankia isolates, or a silty clay loam soil with indigenous Frankia. The presence of frankiae in soils increased plant height and root nodule formation, with significant increases in the presence of indigenous frankiae. Abundance in soils increased significantly for both introduced and indigenous Frankia populations independent of alder species, with generally largest increases in cluster 1b frankiae. Root nodules formed by introduced frankiae did not reflect the diversity of strains inoculated, with nodules generally only formed by strain ArI3 representing cluster 1a/d. All indigenous Frankia populations detected in soil were also found in A. glutinosa nodules, while A. cordata or A. rubra nodules contained different subsets of frankiae with unique abundances dependent on plant species. These results demonstrate the intrageneric differences of host plants in the selection of specific Frankia populations in soils for root nodule formation.


Asunto(s)
Alnus , Frankia , Frankia/genética , Suelo , Microbiología del Suelo , Simbiosis
9.
J Wildl Dis ; 57(3): 503-514, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857294

RESUMEN

Head-starting of the federally endangered Houston toad (Anaxyrus houstonensis), that is, the release of egg strands, tadpoles, and metamorphic juveniles produced in captivity into the original breeding ponds, requires assessment of potential threats for the transmission of pathogens from captive to free-ranging toads. We used Illumina-based 16S rRNA V3 amplicon sequencing to investigate the community structure of bacteria from skin lesions of captive Houston toad and habitat (pond) samples. Proteobacteria, alone or together with Actinobacteria and, in some samples, Cyanobacteria represented virtually all reads in tissue lesion samples, whereas pond samples were much more diverse, with Acidobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, Cyanobacteria, Firmicutes, Planctomycetes, Proteobacteria, and Verrucomicrobia present with little variation between samples. If present in lesions, Actinobacteria were largely represented by Mycobacteriaceae, and here mainly by one sequence identical to sequences of members of the Mycobacterium chelonae-abscessus complex. In pond samples, mycobacteria represented only a small portion of the actinobacteria, although at higher diversity with six distinct reads. Sequences for reads obtained from pond samples were identical to those representing the M. chelonae-abscessus complex, a group with Mycobacterium marinum, Mycobacterium kansasii, Mycobacterium avium, a group with Mycobacterium vaccae, Mycobacterium fortuitum, Mycobacterium poriferae, and a group with Mycobacterium elephantis and Mycobacterium celeriflavum, whereas sequences of high similarity were detected for reads related to those of Mycobacterium holsaticum, Mycobacterium pallens, and Mycobacterium obuense, and Mycobacterium goodii. Our results indicated that lesions observed on the Houston toad in captivity are not the result of mycobacteria in every case, and that the presence of mycobacteria in the captive colony does not represent a novel pathogen threat to the wild populations because such bacteria are also seen in the natural pond habitats for the Houston toad.


Asunto(s)
Mycobacterium , Animales , Ecosistema , Mycobacteriaceae , Mycobacterium/genética , ARN Ribosómico 16S/genética
10.
Protein Expr Purif ; 127: 53-60, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27393071

RESUMEN

KcsA, the bacterial K(+) channel from Streptomyces lividans, is the prototypical model system to study the functional and structural correlations of the pore domain of eukaryotic voltage-gated K(+) channels (Kv channels). It contains all the molecular elements responsible for ion conduction, activation, deactivation and inactivation gating [1]. KcsA's structural simplicity makes it highly amenable for structural studies. Therefore, it is methodological advantageous to produce large amounts of functional and properly folded KcsA in a cost-effective manner. In the present study, we show an optimized protocol for the over-expression and purification of large amounts of high-quality, fully functional and crystallizable KcsA using inexpensive detergents, which significantly lowered the cost of the purification process.


Asunto(s)
Proteínas Bacterianas , Expresión Génica , Canales de Potasio , Streptomyces lividans/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Canales de Potasio/biosíntesis , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Streptomyces lividans/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA