Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cell Oncol ; 8(6): 1996318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35419480

RESUMEN

The early splicing complex A occupies at least eighty nucleotides of intron, in which U2AF covers the polypyrimidine tract. SPF45 (RBM17) functionally substitutes for U2AF on a subset of short introns. Since SPF45 expression confers resistance to various anticancer drugs, SPF45-dependent splicing may play a critical role in multidrug resistance.

2.
PLoS One ; 10(5): e0125998, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993117

RESUMEN

Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species, there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Neuronas/citología , Vertebrados/metabolismo , Animales , Humanos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
3.
Retrovirology ; 12: 30, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25889234

RESUMEN

BACKGROUND: Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis. RESULTS: Current HIV therapies reduce viral load during treatment but titers rebound after treatment is discontinued. We devised a new drug that has a long lasting effect after viral load reduction. We demonstrate here that ABX464 compromises HIV replication of clinical isolates of different subtypes without selecting for drug resistance in PBMCs or macrophages. ABX464 alone, also efficiently compromised viral proliferation in two humanized mouse models infected with HIV that require a combination of 3TC, Raltegravir and Tenofovir (HAART) to achieve viral inhibition in current protocols. Crucially, while viral load increased dramatically just one week after stopping HAART treatment, only slight rebound was observed following treatment cessation with ABX464 and the magnitude of the rebound was maintained below to that of HAART for two months after stopping the treatment. Using a system to visualize single HIV RNA molecules in living cells, we show that ABX464 inhibits viral replication by preventing Rev-mediated export of unspliced HIV-1 transcripts to the cytoplasm and by interacting with the Cap Binding Complex (CBC). Deep sequencing of viral RNA from treated cells established that retained viral RNA is massively spliced but importantly, normal cellular splicing is unaffected by the drug. Consistently ABX464 is non-toxic in humans and therefore represents a promising complement to current HIV therapies. CONCLUSIONS: ABX464 represents a novel class of anti-HIV molecules with unique properties. ABX464 has a long lasting effect in humanized mice and neutralizes the expression of HIV-1 proviral genome of infected immune cells including reservoirs and it is therefore a promising drug toward a functional cure of HIV.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Carga Viral , Adulto , Animales , Fármacos Anti-VIH/farmacología , Modelos Animales de Enfermedad , VIH-1/efectos de los fármacos , Humanos , Ratones SCID , Replicación Viral/efectos de los fármacos
4.
Nat Commun ; 5: 4760, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25208576

RESUMEN

Alternative splicing--the production of multiple messenger RNA isoforms from a single gene--is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2ß have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous--but not individual--depletion of Tra2α and Tra2ß induces substantial shifts in splicing of endogenous Tra2ß target exons, and that both constitutive and alternative target exons are under dual Tra2α-Tra2ß control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability.


Asunto(s)
Empalme Alternativo , Exones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Quinasas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Humanos , Células MCF-7 , Proteínas Quinasas/metabolismo , Factores de Empalme Serina-Arginina
5.
Cancer Treat Res ; 158: 41-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24222354

RESUMEN

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.


Asunto(s)
Proteómica , Precursores del ARN , Empalme Alternativo , Animales , Humanos , Mutación , Empalme del ARN , ARN Mensajero
6.
Nat Commun ; 4: 2480, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24048253

RESUMEN

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways, mechanisms and transcription factors that control differentiation. Here we use high-throughput RT-PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts, from several donors, into iPSCs and their subsequent redifferentiation. We uncover a programme of concerted alternative splicing changes involved in late mesoderm differentiation and controlled by key splicing regulators MBNL1 and RBFOX2. These critical splicing adjustments arise early in vertebrate evolution and remain fixed in at least 10 genes (including PLOD2, CLSTN1, ATP2A1, PALM, ITGA6, KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1), implying that vertebrates require alternative splicing to fully implement the instructions of transcriptional control networks.


Asunto(s)
Empalme Alternativo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Diferenciación Celular , Células Cultivadas , Reprogramación Celular/genética , Fibroblastos/citología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Recién Nacido , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Unión Proteica , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal
7.
PLoS Genet ; 9(4): e1003474, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637638

RESUMEN

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.


Asunto(s)
Precursores del ARN , Empalme del ARN , Empalme Alternativo , Animales , Encéfalo/metabolismo , Exones , Humanos , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética
8.
Mol Cell Biol ; 33(2): 396-405, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23149937

RESUMEN

Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Biología Computacional , Células Epiteliales/citología , Células Epiteliales/metabolismo , Exones , Feto/citología , Feto/metabolismo , Perfilación de la Expresión Génica , Células HeLa , Humanos , Células Madre Mesenquimatosas/citología , Interferencia de ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Nucleic Acids Res ; 40(1): 1-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908400

RESUMEN

Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.


Asunto(s)
Empalme Alternativo , Drosophila/genética , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Músculos/metabolismo , Factores Sexuales , Factores de Transcripción/genética
10.
Mol Biol Evol ; 29(1): 261-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21873631

RESUMEN

Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue-specific isoforms of a target gene that expedites a highly conserved signaling pathway.


Asunto(s)
Evolución Molecular , Quinasas Quinasa Quinasa PAM/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Exones , Peces , Humanos , Isoenzimas , Quinasas Quinasa Quinasa PAM/metabolismo , Mamíferos , Ratones , Datos de Secuencia Molecular , Músculos/enzimología , Músculos/metabolismo , Miocardio/enzimología , Miocardio/metabolismo , Especificidad de Órganos , Erizos de Mar , Alineación de Secuencia , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis
11.
Nat Struct Mol Biol ; 16(6): 670-6, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19448617

RESUMEN

Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.


Asunto(s)
Empalme Alternativo , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Exones , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias Ováricas/metabolismo , Proteínas de Unión al ARN/química , Análisis de Secuencia de ADN
12.
Cancer Res ; 68(22): 9525-31, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19010929

RESUMEN

Breast cancer is the most common cause of cancer death among women under age 50 years, so it is imperative to identify molecular markers to improve diagnosis and prognosis of this disease. Here, we present a new approach for the identification of breast cancer markers that does not measure gene expression but instead uses the ratio of alternatively spliced mRNAs as its indicator. Using a high-throughput reverse transcription-PCR-based system for splicing annotation, we monitored the alternative splicing profiles of 600 cancer-associated genes in a panel of 21 normal and 26 cancerous breast tissues. We validated 41 alternative splicing events that significantly differed in breast tumors relative to normal breast tissues. Most cancer-specific changes in splicing that disrupt known protein domains support an increase in cell proliferation or survival consistent with a functional role for alternative splicing in cancer. In a blind screen, a classifier based on the 12 best cancer-associated splicing events correctly identified cancer tissues with 96% accuracy. Moreover, a subset of these alternative splicing events could order tissues according to histopathologic grade, and 5 markers were validated in a further blind set of 19 grade 1 and 19 grade 3 tumor samples. These results provide a simple alternative for the classification of normal and cancerous breast tumor tissues and underscore the putative role of alternative splicing in the biology of cancer.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Receptores de Estrógenos/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Mol Cell Biol ; 28(19): 6033-43, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18644864

RESUMEN

Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.


Asunto(s)
Empalme Alternativo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Precursores del ARN/metabolismo , Secuencias de Aminoácidos , Línea Celular Tumoral , Regulación hacia Abajo , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Reacción en Cadena de la Polimerasa
14.
Methods Mol Biol ; 419: 161-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18369982

RESUMEN

Most metazoan genes are alternatively spliced, and a large number of alternatively spliced isoforms are likely to be functionally significant and expressed at specific stages of pathogenesis or differentiation. Splicing changes usually only affect a small portion of a gene, and these changes may cause significant mRNA degradation. After RT-PCR, minor variants can form heteroduplexes with the major variants. Affinity purification of these heteroduplexes using immobilized Thermus aquaticus single-stranded DNA-binding protein allows purification of alternative splice forms in a 1:1 ratio, which makes it easy to sequence the rare form. This chapter provides a detailed protocol of the technique I have developed to identify spliced isoforms called enrichment of alternatively spliced isoforms or EASI.


Asunto(s)
Empalme Alternativo , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/aislamiento & purificación , Ácidos Nucleicos Heterodúplex/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Testículo/metabolismo , Thermus/metabolismo
15.
Cancer Res ; 68(3): 657-63, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18245464

RESUMEN

Intense efforts are currently being directed toward profiling gene expression in the hope of developing better cancer markers and identifying potential drug targets. Here, we present a sensitive new approach for the identification of cancer signatures based on direct high-throughput reverse transcription-PCR validation of alternative splicing events. This layered and integrated system for splicing annotation (LISA) fills a gap between high-throughput microarray studies and high-sensitivity individual gene investigations, and was created to monitor the splicing of 600 cancer-associated genes in 25 normal and 21 serous ovarian cancer tissues. Out of >4,700 alternative splicing events screened, the LISA identified 48 events that were significantly associated with serous ovarian tumor tissues. In a further screen directed at 39 ovarian tissues containing cancer pathologies of various origins, our ovarian cancer splicing signature successfully distinguished all normal tissues from cancer. High-volume identification of cancer-associated splice forms by the LISA paves the way for the use of alternative splicing profiling to diagnose subtypes of cancer.


Asunto(s)
Neoplasias Ováricas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Empalme Alternativo , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , ARN Mensajero/metabolismo
16.
FEBS Lett ; 581(22): 4127-31, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17716673

RESUMEN

Alternative splicing leads to multiple proteins from individual genes and the most common deviation from the norm is precise exon omission. Mutations that cause this can be found deep in introns, especially downstream of the cassette exon. This review summarises what is known about these intronic splicing enhancers and their RNA-binding proteins that cause spliceosome assembly on the upstream exon.


Asunto(s)
Empalme Alternativo/genética , Intrones/genética , Neuronas/metabolismo , Animales , Exones/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo
17.
J Cell Sci ; 120(Pt 2): 309-19, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17200140

RESUMEN

The scaffold attachment factor SAFB1 and its recently discovered homologue SAFB2 might provide an important link between pre-mRNA splicing, intracellular signalling and transcription. Using novel mono-specific antisera, we found endogenous SAFB2 protein has a different spatial distribution from SAFB1 within the nucleus where it is found in much larger nuclear complexes (up to 670 kDa in size), and a distinct pattern of expression in adult human testis. By contrast, SAFB1 protein predominantly exists either as smaller complexes or as a monomeric protein. Our results suggest stable core complexes containing components comprised of SAFB1, SAFB2 and the RNA binding proteins Sam68 and hnRNPG exist in parallel with free SAFB1 protein. We found that SAFB2 protein, like SAFB1, acts as a negative regulator of a tra2beta variable exon. Despite showing an involvement in splicing, we detected no stable interaction between SAFB proteins and SR or SR-related splicing regulators, although these were also found in stable higher molecular mass complexes. Each of the detected alternative splicing regulator complexes exists independently of intact nucleic acids, suggesting they might be pre-assembled and recruited to nascent transcripts as modules to facilitate alternative splicing, and/or they represent nuclear storage compartments from which active proteins are recruited.


Asunto(s)
Empalme Alternativo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Empalme del ARN , Receptores de Estrógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Modelos Biológicos , Proteínas Asociadas a Matriz Nuclear/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión/metabolismo , Células de Sertoli/citología , Células de Sertoli/metabolismo , Técnicas del Sistema de Dos Híbridos
18.
PLoS Med ; 3(10): e431, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17076561

RESUMEN

BACKGROUND: Sequence analysis of the regulators of complement activation (RCA) cluster of genes at chromosome position 1q32 shows evidence of several large genomic duplications. These duplications have resulted in a high degree of sequence identity between the gene for factor H (CFH) and the genes for the five factor H-related proteins (CFHL1-5; aliases CFHR1-5). CFH mutations have been described in association with atypical haemolytic uraemic syndrome (aHUS). The majority of the mutations are missense changes that cluster in the C-terminal region and impair the ability of factor H to regulate surface-bound C3b. Some have arisen as a result of gene conversion between CFH and CFHL1. In this study we tested the hypothesis that nonallelic homologous recombination between low-copy repeats in the RCA cluster could result in the formation of a hybrid CFH/CFHL1 gene that predisposes to the development of aHUS. METHODS AND FINDINGS: In a family with many cases of aHUS that segregate with the RCA cluster we used cDNA analysis, gene sequencing, and Southern blotting to show that affected individuals carry a heterozygous CFH/CFHL1 hybrid gene in which exons 1-21 are derived from CFH and exons 22/23 from CFHL1. This hybrid encodes a protein product identical to a functionally significant CFH mutant (c.3572C>T, S1191L and c.3590T>C, V1197A) that has been previously described in association with aHUS. CONCLUSIONS: CFH mutation screening is recommended in all aHUS patients prior to renal transplantation because of the high risk of disease recurrence post-transplant in those known to have a CFH mutation. Because of our finding it will be necessary to implement additional screening strategies that will detect a hybrid CFH/CFHL1 gene.


Asunto(s)
Síndrome Hemolítico-Urémico/genética , Proteínas Mutantes Quiméricas/genética , Adulto , Anciano de 80 o más Años , Southern Blotting , Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/genética , Proteínas del Sistema Complemento/genética , Roturas del ADN , Análisis Mutacional de ADN , Femenino , Dosificación de Gen , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN
19.
Nucleic Acids Res ; 34(15): e103, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16951290

RESUMEN

Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This directly purifies the single-stranded regions of heteroduplexes between alternative splices formed in the PCR, enabling direct sequencing of all the rare alternative splice forms of any gene. As a proof of principle the alternative transcripts of three tumour suppressor genes, TP53, MLH1 and MSH2, were isolated from testis cDNA. These contain missing exons, cryptic splice sites or include completely novel exons. EASI beads are stable for months in the fridge and can be easily combined with standard protocols to speed the cloning of novel transcripts.


Asunto(s)
Empalme Alternativo , Biotecnología/métodos , ADN Bacteriano/metabolismo , ADN Bacteriano/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Thermus/genética
20.
Bioessays ; 28(4): 378-86, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16547952

RESUMEN

Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.


Asunto(s)
Empalme Alternativo/genética , Neoplasias/genética , Animales , Apoptosis , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Invasividad Neoplásica/patología , Neoplasias/irrigación sanguínea , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA