Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 3(1): 010801, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725540

RESUMEN

Acoustic propagation measurements were collected in a seagrass meadow in a shallow lagoon for periods of over 65 h in winter and 93 h in summer. A bottom-deployed sound source transmitted chirps (0.1-100 kHz) every 10 min that were received on a four-receiver horizontal hydrophone array. Oceanographic probes measured various environmental parameters. Daytime broadband acoustic attenuation was 2.4 dB greater in summer than winter, and the median received acoustic energy levels were 8.4 dB lower in summer compared to winter. These differences were attributed in part to seasonal changes in photosynthesis bubble production and above-ground seagrass biomass.


Asunto(s)
Hydrocharitaceae , Estaciones del Año , Acústica , Biomasa , Sonido
2.
J Acoust Soc Am ; 152(4): 2456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36319245

RESUMEN

Infauna influence geoacoustic parameters in surficial marine sediments. To investigate these effects, an experiment was conducted in natural sand-silt sediment in the northern Gulf of Mexico. In situ acoustic measurements of sediment sound speed, attenuation, and shear speed were performed, and sediment cores were collected from the upper 20 cm of the seabed. Laboratory measurements of sound speed and attenuation in the cores were conducted, after which the core contents were analyzed for biological and physical properties. Since no model currently accounts for the effects of infauna, a deviation from model predictions is expected. To assess the extent of this, acoustic measurements were compared with the viscous grain shearing model from Buckingham [J. Acoust. Soc. Am. 122, 1486 (2007); J. Acoust. Soc. Am. 148, 962 (2020)], for which depth-dependent profiles of sediment porosity and mean grain size measured from the cores were used as input parameters. Comparison of acoustic results with distributions of infauna, worm tubes, and shell hash suggests biogenic impacts on acoustic variability and model accuracy are important in surficial marine sediments. The presence of infauna and worm tubes were correlated with higher variability in both sound speed and attenuation and greater deviation from the model near the sediment-water interface.


Asunto(s)
Acústica , Sedimentos Geológicos , Sonido , Viscosidad , Porosidad
3.
J Acoust Soc Am ; 147(3): 2002, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32237865

RESUMEN

Seagrasses provide a multitude of ecosystem services and serve as important organic carbon stores. However, seagrass habitats are declining worldwide, threatened by global climate change and regional shifts in water quality. Acoustical methods have been applied to assess changes in oxygen production of seagrass meadows since sound propagation is sensitive to the presence of bubbles, which exist both within the plant tissue and freely floating the water as byproducts of photosynthesis. This work applies acoustic remote sensing techniques to characterize two different regions of a seagrass meadow: a densely vegetated meadow of Thalassia testudinum and a sandy region sparsely populated by isolated stands of T. testudinum. A Bayesian approach is applied to estimate the posterior probability distributions of the unknown model parameters. The sensitivity of sound to the void fraction of gas present in the seagrass meadow was established by the narrow marginal probability distributions that provided distinct estimates of the void fraction between the two sites. The absolute values of the estimated void fractions are biased by limitations in the forward model, which does not capture the full complexity of the seagrass environment. Nevertheless, the results demonstrate the potential use of acoustical methods to remotely sense seagrass health and density.


Asunto(s)
Ecosistema , Hydrocharitaceae , Teorema de Bayes , Carbono , Tecnología de Sensores Remotos
4.
J Acoust Soc Am ; 146(4): EL335, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31671955

RESUMEN

Acoustic propagation measurements were conducted in a Thalassia testudinum meadow in the Lower Laguna Madre, a shallow bay on the Texas Gulf of Mexico coast. A piezoelectric source transmitted frequency-modulated chirps (0.1 to 100 kHz) over a 24-h period during which oceanographic probes measured environmental parameters including dissolved oxygen and solar irradiance. Compared to a nearby less vegetated area, the received level was lower by as much as 30 dB during the early morning hours. At the peak of photosynthesis-driven bubble production in the late afternoon, an additional decrease in level of 11 dB was observed.

5.
J Acoust Soc Am ; 146(2): 1326, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472533

RESUMEN

The sound speed of sand has been shown to vary with frequency, yet in many instances in geoacoustic inversions, sand is modeled as a frequency-independent effective fluid. This paper investigates the effect to which assuming a frequency-independent fluid model that neglects poroelasticity can skew parameter estimation in a laboratory layered waveguide consisting of 1-mm diameter water-saturated glass beads (WSGBs), suspended in a water-filled glass tube. The phase speed in the waveguide was measured from 1 to 7 kHz and compared with phase speeds predicted in a finite element simulation of the experiment, where the WSGBs were treated as either a fluid with constant bulk density and frequency-independent or frequency-dependent sound speed, or by an effective density fluid model (EDFM) that includes poroelasticity. Measurement-simulation agreement occurred when using the EDFM to model the WSGB, although neglecting poroelasticity in the simulation only led to a maximum phase speed discrepancy of 8 m/s. However, this effect was significant when an inference process was used to determine the effective fluid properties of the WSGBs. Finally, high-frequency (150 to 450 kHz) direct sound speed measurements of the WSGB were obtained, and best matched the mid-frequency inference results obtained using the EDFM.

6.
J Acoust Soc Am ; 146(2): 1384, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31472547

RESUMEN

Estuarine, riverine, and certain continental shelf environments experience significant temperature and salinity variability near the ocean bottom that can produce significant changes in how sound interacts with fine-grained sediments, presenting challenges in applications including shallow water sonar and bottom surveys. To begin to understand the effects of this variability on acoustic reflection, reflection measurements in the laboratory near 1 MHz were obtained from a water-clay interface while varying the salinity of the bottom water. At certain angles of incidence, salinity variations caused changes in bottom loss up to 15 dB and 180-degree phase shifts in the reflected signal, and induced changes in the reflectivity of the clay through the diffusion process, thereby leading to complicated, coupled interactions at the water-clay interface. By modeling the reflectivity of clay during molecular diffusion of salt, the diffusion coefficients were experimentally inferred and simulations at lower frequencies and longer timescales were performed. Derived characteristic length scales associated with the molecular diffusion of salt are compared with acoustic wavelengths to identify frequency regimes that are sensitive to salinity fluctuations. Results indicate that the dynamic nature of the bottom water can cause measurable and significant effects in reflectivity at and below frequencies applicable to sonar.

7.
J Acoust Soc Am ; 141(5): EL433, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28599545

RESUMEN

A one-dimensional acoustic resonator technique was used to study leaves of the Mediterranean seagrass species Posidonia oceanica collected from Crete and Sicily. The leaf blades were finely divided, mixed with artificial seawater, and degassed to create a suspension of tissue independent of leaf structure and free bubbles or internal voids. The low-frequency (1 to 8 kHz) bulk modulus of the leaf tissue was inferred from the acoustic measurements and independent density measurements. The measured density of the seagrass tissue was 960 ± 20 kg/m3 which agrees with previously published values. The inferred bulk modulus was 2.1 GPa with 90% confidence limits 1.0-5.0 GPa.


Asunto(s)
Acústica , Alismatales/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Simulación por Computador , Módulo de Elasticidad , Análisis de Fourier , Modelos Teóricos , Método de Montecarlo , Movimiento (Física) , Agua de Mar , Sonido , Vibración
8.
J Acoust Soc Am ; 141(6): EL555, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28618796

RESUMEN

The acoustics of seagrass meadows impacts naval and oceanographic sonar applications. To study this environment, a one-dimensional resonator was used to assess the low-frequency (1-5 kHz) acoustic response of the leaf blades of the Mediterranean seagrass Posidonia oceanica in water. Three separate collections of plants from Crete, Greece, and Sicily, Italy were investigated. A high consistency in effective sound speed was observed within each collection while a strong variability was observed between different collections. Average size, mass, and epiphytic coverage within each collection were quantified, and discoloration and stiffness are discussed qualitatively with respect to the observed acoustic variability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...