Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675946

RESUMEN

Di-n-butyl phthalate (DBP) is one of the most extensively used plasticizers for providing elasticity to plastics. Being potentially harmful to humans, investigating eco-benign options for its rapid degradation is imperative. Microbe-mediated DBP mineralization is well-recorded, but studies on the pollutant's fungal catabolism remain scarce. Thus, the present investigation was undertaken to exploit the fungal strains from toxic sanitary landfill soil for the degradation of DBP. The most efficient isolate, SDBP4, identified on a molecular basis as Aspergillus flavus, was able to mineralize 99.34% dibutyl phthalate (100 mg L-1) within 15 days of incubation. It was found that the high production of esterases by the fungal strain was responsible for the degradation. The strain also exhibited the highest biomass (1615.33 mg L-1) and total soluble protein (261.73 µg mL-1) production amongst other isolates. The DBP degradation pathway scheme was elucidated with the help of GC-MS-based characterizations that revealed the formation of intermediate metabolites such as benzyl-butyl phthalate (BBP), dimethyl-phthalate (DMP), di-iso-butyl-phthalate (DIBP) and phthalic acid (PA). This is the first report of DBP mineralization assisted with A. flavus, using it as a sole carbon source. SDBP4 will be further formulated to develop an eco-benign product for the bioremediation of DBP-contaminated toxic sanitary landfill soils.

2.
J Basic Microbiol ; 63(3-4): 439-453, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36319472

RESUMEN

Seeds harbor naturally occurring microbial endophytes that proliferate during seedling development; playing crucial roles in seedling growth, establishment, and protection against fungal pathogens. Resilient actinobacteria of wheat seeds have been explored in this study for their beneficial traits. Ten actinobacteria isolated from the surface-sterilized seeds of wheat variety HD3117 were identified as nine species of Streptomyces and one of Nocardiopsis. Most isolates could grow at 42°C, 5% NaCl, and 10% poly ethylene glycol (PEG); exhibited variable hydrolytic enzyme production for amylase, cellulase, and protease. Few isolates produced indole acetic acid (9.0-18.9 µg ml-1 ) and could solubilize P (11.3-85.2 µg ml-1 ). The isolates were antagonistic against one or more fungal pathogens under test (Fusarium graminearum, Bipolaris sorokiniana, Alternaria sp., and Tilletia indica), of which Streptomyces sampsonii WSA20 inhibited all in dual culture assay. Priming of wheat seeds with the efficient isolate WSA20 led to effective colonization in the root zone and significantly improved germination, shoot and root length in seed germination assay. Significant protection was recorded in microcosm experiment where no symptoms of disease were observed. This study shows the significance of actinobacterial endophytes of wheat seeds in influencing seed germination and seedling growth while protecting from soil-borne pathogens. It is original and suggests that the seed inhabiting efficient actinobacteria may be developed as efficient bioinoculant for sustainable farming system.


Asunto(s)
Actinobacteria , Triticum , Triticum/microbiología , Bacterias , Semillas , Plantones
3.
Microbiol Resour Announc ; 9(20)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409538

RESUMEN

Azotobacter chroococcum strain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated A. chroococcum strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.83%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...