Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 6(2): 216, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28330288

RESUMEN

Biosynthesis of plant-mediated silver nanoparticles is gaining significant importance due to environmentally safe 'green method' and it is an efficient alternative method. In the present study, silver nanoparticles were synthesized by using root extract of Glycyrrhiza glabra an important medicinal plant. The AgNPs are characterized by spectral analysis; the surface plasmon resonance (SPR) peak of AgNPs showed maximum absorption at 445 nm. Fourier-transform infrared spectroscopy (FT-IR) data show that the O-H hydroxyl groups, carboxylic acids, ester and ether groups and C-O stretching of alcohols have been utilized in the formation of AgNPs. The X-ray powder diffraction (XRD) data reveal that the AgNPs are face-centered cubic (fcc) in structure. The size was determined by particle size analyzer and atomic force microscope (AFM); the results reveal that AgNPs were spherical in shape and the average grain size is determined as 41.5-46.5 nm. Transmission electron microscopy (TEM) micrographs obtained show that AgNPs were roughly spherical and well dispersed with the sizes ranging from 10 to 45 nm ± 5 nm. The biofabricated AgNPs are extremely stable due to its high negative zeta potential -34.1 mV which indicates that the nanoparticles are polydispered in nature. The cytotoxic studies of AgNPs on human CD34 +ve stem cells in microcarrier culture reveal excellent growth at different concentrations of biosynthesized AgNPs. This is the first report of microcarrier culture of CD34 +ve stem cells on biosynthesized AgNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...