Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(27): 39678-39689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831145

RESUMEN

Carbon monoxide (CO) is a prominent air pollutant in cities, with far-reaching implications for both local air quality and global atmospheric chemistry. The long-term change in atmospheric CO levels at a specific location is influenced by a complex interplay of local emissions, atmospheric transport, and photochemical processes, making it a subject of considerable interest. This study presents an 8-year analysis (2014-2021) of in situ CO observations using a cutting-edge laser-based analyzer at an urban site in Ahmedabad, western India. The long-term observations reveal a subtle trend in CO levels, masked by contrasting year-to-year variations, particular after 2018, across distinct diurnal time windows. Mid-afternoon (12:00-16:00 h) CO levels, reflecting background and regional conditions, remained relatively stable over the study period. In contrast, evening (18:00-21:00 h) CO levels, influenced by local emissions, exhibited substantial inter-annual variability without discernible trends from 2014 to 2018. However, post-2018, evening CO levels showed a consistent decline, predating COVID-19 lockdown measures. This decline coincided with the nationwide adoption of Bharat stage IV emission standards and other measures aimed at reducing vehicular emissions. The COVID-19 lockdown in 2020 further resulted in a noteworthy 29% reduction in evening CO levels compared to the pre-lockdown (2014-2019) period, highlighting the potential for substantial CO reduction through stringent vehicular emission controls. The observed long-term changes in CO levels do not align with the decreasing emission estimated by various inventories from 2014 to 2018, suggesting a need for improved emission statistics in Indian urban regions. This study underscores the importance of ongoing continuous CO measurements in urban areas to inform policy efforts aimed at controlling atmospheric pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monóxido de Carbono , Ciudades , Monitoreo del Ambiente , Monóxido de Carbono/análisis , India , Contaminantes Atmosféricos/análisis , COVID-19 , Emisiones de Vehículos/análisis
2.
Environ Sci Pollut Res Int ; 24(26): 20972-20981, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28726222

RESUMEN

Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0-14.2 million ton (4.2-15.0%) for wheat and 0.3-6.7 million ton (0.3-6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Productos Agrícolas/efectos de los fármacos , Oryza/efectos de los fármacos , Ozono/farmacología , Triticum/efectos de los fármacos , Contaminantes Atmosféricos/análisis , India , Ozono/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...