Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Int J Med Sci ; 21(10): 1915-1928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113883

RESUMEN

Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1ß, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Piper , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Piper/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Plantas Medicinales/química
4.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023775

RESUMEN

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Asunto(s)
Plantas , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Transducción de Señal , Estrés Fisiológico , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Desarrollo de la Planta
5.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999050

RESUMEN

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanocompuestos , Ácido Vanílico , Ácido Vanílico/química , Ácido Vanílico/farmacología , Nanocompuestos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Plata/química , Plata/farmacología , Quitosano/química , Quitosano/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/química , Línea Celular Tumoral
6.
Technol Health Care ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39031400

RESUMEN

BACKGROUND: Ficus benghalensis has been used by local health care practitioners to treat pain, inflammation, rheumatism, and other health issues. OBJECTIVE: In this study, the crude extract and diverse fractions, along with the isolated compound of F. benghalensis were examined for their roles as muscle relaxants, analgesics, and sedatives. METHODS: The extract and isolated compound 1 were screened for muscle-relaxant, analgesic, and sedative actions. The acetic acid-mediated writhing model was utilized for analgesic assessment, the muscle relaxant potential was quantified through traction and inclined plan tests, and the open field test was applied for sedative effects. RESULTS: The extract/fractions (25, 50, and 100 mg/kg) and isolated compounds (2.5, 5, 10, and 20 mg/kg) were tested at various doses. A profound (p< 0.001) reduce in the acetic acid-mediated writhing model was observed against carpachromene (64.44%), followed by ethyl acetate (60.67%) and methanol (58.42%) fractions. A marked (p< 0.001) muscle relaxant activity was noticed against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Regarding the sedative effect, a significant action was noted against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Furthermore, the binding modes of the isolated compounds were explored using molecular docking. The molecular docking study revealed that the isolated compound possessed good binding affinity for COX2 and GABA. Our isolated compound may possess inhibitory activity against COX2 and GABA receptors. CONCLUSION: The extract and isolated compounds of Ficus benghalensis can be used as analgesics, muscle relaxants, and sedatives. However, detailed molecular and functional analyses are essential to ascertain their function as muscle relaxants, analgesics, and sedatives.

7.
Front Pharmacol ; 15: 1410942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035991

RESUMEN

The application of network pharmacology (NP) has advanced our understanding of the complex molecular mechanisms underlying diseases, including neck, head, and oral cancers, as well as thyroid carcinoma. This review aimed to explore the therapeutic potential of natural network pharmacology using compounds and traditional Chinese medicines for combating these malignancies. NP serves as a pivotal tool that provides a comprehensive view of the interactions among compounds, genes, and diseases, thereby contributing to the advancement of disease treatment and management. In parallel, this review discusses the significance of publicly accessible databases in the identification of oral, head, and neck cancer-specific genes. These databases, including those for head and neck oral cancer, head and neck cancer, oral cancer, and genomic variants of oral cancer, offer valuable insights into the genes, miRNAs, drugs, and genetic variations associated with these cancers. They serve as indispensable resources for researchers, clinicians, and drug developers, contributing to the pursuit of precision medicine and improved treatment of these challenging malignancies. In summary, advancements in NP could improve the globalization and modernization of traditional medicines and prognostic targets as well as aid in the development of innovative drugs. Furthermore, this review will be an eye-opener for researchers working on drug development from traditional medicines by applying NP approaches.

8.
Curr Gene Ther ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38808710

RESUMEN

Oral Squamous Cell Carcinoma (OSCC) is a widespread and challenging disease that accounts for 94% of cancers of the oral cavity worldwide. Bacteriophages (phages) have shown promise as a potential theranostic agent for the treatment of OSCC. It may offer advantages in overcoming the challenges of conventional methods. Modern high-throughput pyrosequencing techniques confirm the presence of specific bacterial strains associated with OSCC. Bio-panning and filamentous phages facilitate visualization of the peptide on surfaces and show high affinity in OSCC cells. The peptide has the potential to bind integrin (αvß6), aid in diagnosis, and inhibit the proliferation of OSCC cells. Mimotopes of tumor-associated antigens show cytotoxic and immune responses against cancer cells. Biomarker-based approaches such as transferrin enable early OSCC diagnosis. A modified temperate phage introduces CRISPR-Cas3 to target antimicrobial-resistant bacteria associated with OSCC. The research findings highlight the evolving field of phage diagnostics and therapy and represent a new avenue for non-invasive, targeted approaches to the detection and treatment of OSCC. However, extensive clinical research is required to validate the efficacy of phages in innovative cancer theranostic strategies.

10.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774755

RESUMEN

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Asunto(s)
Antraquinonas , Apoptosis , Neoplasias de la Mama , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Pleurotus , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Antraquinonas/farmacología , Células MCF-7 , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Femenino , Apoptosis/efectos de los fármacos , Apoptosis/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Pleurotus/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
ACS Omega ; 9(12): 13522-13533, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559935

RESUMEN

Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.

12.
Bioprocess Biosyst Eng ; 47(7): 971-990, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554183

RESUMEN

The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.


Asunto(s)
Biocombustibles , Biomasa , Lignina , Lignina/metabolismo , Lignina/química , Biocombustibles/economía , Nanoestructuras/química , Nanotecnología/economía
13.
Int J Med Sci ; 21(4): 593-600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464834

RESUMEN

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Asunto(s)
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agua , Acetonitrilos , Antiinflamatorios
14.
Plant Physiol Biochem ; 208: 108519, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490154

RESUMEN

Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.


Asunto(s)
Metales de Tierras Raras , Nanoestructuras , Resiliencia Psicológica , Humanos , Metales de Tierras Raras/análisis , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Plantas/metabolismo , Desarrollo de la Planta , Suelo/química
15.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698833

RESUMEN

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Asunto(s)
Productos Biológicos , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Huntington/metabolismo , Ratas Wistar , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Nitrocompuestos/farmacología , Propionatos/farmacología , Propionatos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
17.
Curr Gene Ther ; 24(1): 2-3, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37526455

RESUMEN

Biobank involves collecting, processing, storing, and organizing biosamples, along with relevant personal and health information such as medical history, family records, genetics data, and lifestyle details, for medical research and clinical care. Oral biobanking is a recently evolved field alongside the rising of precision medicine due to recent research findings in oral oncology and other oral complaints, namely caries and periodontal disease. The common samples in oral biobanks are matured and primary teeth, dental pulp cells, oral biopsies, oral rinses, saliva, and swabs from the buccal region. Moreover, biobank should not conceive of as a static collection of samples and data but as a dynamic resource for developing novel techniques that meet current scientific demands through international networking. However, the major bottlenecks associated with oral biobanks are privacy, processing of samples, normalization of data, extended durability of interest markers of banked samples, and financial sustainability of biobanks. Thus in this correspondence, we argue that an alternative approach is urgently needed to protect the interests of many stakeholders.


Asunto(s)
Bancos de Muestras Biológicas , Investigación Biomédica , Medicina de Precisión
18.
Asian J Psychiatr ; 91: 103861, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134565

RESUMEN

Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.


Asunto(s)
Microbioma Gastrointestinal , Resiliencia Psicológica , Humanos , Microbioma Gastrointestinal/fisiología , Eje Cerebro-Intestino , Disbiosis , Encéfalo/metabolismo
19.
Mol Neurobiol ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966683

RESUMEN

Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.

20.
Front Genet ; 14: 1272446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886688

RESUMEN

The increasing demand for food is the result of an increasing population. It is crucial to enhance crop yield for sustainable production. Recently, microRNAs (miRNAs) have gained importance because of their involvement in crop productivity by regulating gene transcription in numerous biological processes, such as growth, development and abiotic and biotic stresses. miRNAs are small, non-coding RNA involved in numerous other biological functions in a plant that range from genomic integrity, metabolism, growth, and development to environmental stress response, which collectively influence the agronomic traits of the crop species. Additionally, miRNA families associated with various agronomic properties are conserved across diverse plant species. The miRNA adaptive responses enhance the plants to survive environmental stresses, such as drought, salinity, cold, and heat conditions, as well as biotic stresses, such as pathogens and insect pests. Thus, understanding the detailed mechanism of the potential response of miRNAs during stress response is necessary to promote the agronomic traits of crops. In this review, we updated the details of the functional aspects of miRNAs as potential regulators of various stress-related responses in agronomic plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...