Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 119(1): 153-175, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593295

RESUMEN

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulación de la Expresión Génica de las Plantas , Luz , Nitrógeno , Empalmosomas , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Empalmosomas/metabolismo , Empalmosomas/genética , Carbono/metabolismo , Nitrógeno/metabolismo , Antocianinas/metabolismo
2.
BMC Bioinformatics ; 25(1): 30, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233793

RESUMEN

MOTIVATION: Within the frame of their genetic capacity, organisms are able to modify their molecular state to cope with changing environmental conditions or induced genetic disposition. As high throughput methods are becoming increasingly affordable, time series analysis techniques are applied frequently to study the complex dynamic interplay between genes, proteins, and metabolites at the physiological and molecular level. Common analysis approaches fail to simultaneously include (i) information about the replicate variance and (ii) the limited number of responses/shapes that a biological system is typically able to take. RESULTS: We present a novel approach to model and classify short time series signals, conceptually based on a classical time series analysis, where the dependency of the consecutive time points is exploited. Constrained spline regression with automated model selection separates between noise and signal under the assumption that highly frequent changes are less likely to occur, simultaneously preserving information about the detected variance. This enables a more precise representation of the measured information and improves temporal classification in order to identify biologically interpretable correlations among the data. AVAILABILITY AND IMPLEMENTATION: An open source F# implementation of the presented method and documentation of its usage is freely available in the TempClass repository, https://github.com/CSBiology/TempClass  [58].


Asunto(s)
Proyectos de Investigación , Factores de Tiempo
3.
J Exp Bot ; 75(3): 979-1003, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37877811

RESUMEN

High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Temperatura , Carbono/metabolismo , Fotosíntesis , Acetatos/metabolismo
4.
Microlife ; 4: uqad028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441524

RESUMEN

Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.

5.
Commun Biol ; 5(1): 460, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562408

RESUMEN

Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops.


Asunto(s)
Chlamydomonas reinhardtii , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Calor , Plantas/metabolismo , Temperatura , Tilacoides/metabolismo
6.
J Exp Bot ; 73(1): 245-262, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34436580

RESUMEN

While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.


Asunto(s)
Chlamydomonas , Complejo de Proteína del Fotosistema II , Chlamydomonas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
7.
Entropy (Basel) ; 22(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33286800

RESUMEN

The objective of gene set enrichment analysis (GSEA) in modern biological studies is to identify functional profiles in huge sets of biomolecules generated by high-throughput measurements of genes, transcripts, metabolites, and proteins. GSEA is based on a two-stage process using classical statistical analysis to score the input data and subsequent testing for overrepresentation of the enrichment score within a given functional coherent set. However, enrichment scores computed by different methods are merely statistically motivated and often elusive to direct biological interpretation. Here, we propose a novel approach, called Thermodynamically Motivated Enrichment Analysis (TMEA), to account for the energy investment in biological relevant processes. Therefore, TMEA is based on surprisal analysis, which offers a thermodynamic-free energy-based representation of the biological steady state and of the biological change. The contribution of each biomolecule underlying the changes in free energy is used in a Monte Carlo resampling procedure resulting in a functional characterization directly coupled to the thermodynamic characterization of biological responses to system perturbations. To illustrate the utility of our method on real experimental data, we benchmark our approach on plant acclimation to high light and compare the performance of TMEA with the most frequently used method for GSEA.

8.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994740

RESUMEN

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Asunto(s)
Chlorophyceae/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/fisiología , Proteínas de Plantas/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/ultraestructura , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Clonación Molecular , Inmunoprecipitación , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
9.
Plant Physiol ; 181(4): 1480-1497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31604811

RESUMEN

Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.


Asunto(s)
Aclimatación/efectos de la radiación , Chlamydomonas/genética , Chlamydomonas/efectos de la radiación , Luz , Mutación/genética , Proteínas de Plantas/genética , Acetatos/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Fenotipo , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Pliegue de Proteína/efectos de la radiación , Multimerización de Proteína , Proteolisis/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación , Especificidad por Sustrato/efectos de la radiación , Temperatura , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...