Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659767

RESUMEN

Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular ß-amyloid (Aß) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aß, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aß, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aß deposits. At sites of microhemorrhage, Aß was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aß deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by ß-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aß deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.

2.
Nat Commun ; 14(1): 8220, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086820

RESUMEN

We report the case of a 79-year-old woman with Alzheimer's disease who participated in a Phase III randomized controlled trial called CLARITY-AD testing the experimental drug lecanemab. She was randomized to the placebo group and subsequently enrolled in an open-label extension which guaranteed she received the active drug. After the third biweekly infusion, she suffered a seizure characterized by speech arrest and a generalized convulsion. Magnetic resonance imaging revealed she had multifocal swelling and a marked increase in the number of cerebral microhemorrhages. She was treated with an antiepileptic regimen and high-dose intravenous corticosteroids but continued to worsen and died after 5 days. Post-mortem MRI confirmed extensive microhemorrhages in the temporal, parietal and occipital lobes. The autopsy confirmed the presence of two copies of APOE4, a gene associated with a higher risk of Alzheimer's disease, and neuropathological features of moderate severity Alzheimer's disease and severe cerebral amyloid angiopathy with perivascular lymphocytic infiltrates, reactive macrophages and fibrinoid degeneration of vessel walls. There were deposits of ß-amyloid in meningeal vessels and penetrating arterioles with numerous microaneurysms. We conclude that the patient likely died as a result of severe cerebral amyloid-related inflammation.


Asunto(s)
Enfermedad de Alzheimer , Arteritis , Angiopatía Amiloide Cerebral , Vasculitis del Sistema Nervioso Central , Anciano , Femenino , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/patología , Enfermedad Iatrogénica , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Sci Rep ; 13(1): 11948, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488165

RESUMEN

Examination of healthy and diseased human brain is essential to translational neuroscience. Protein-protein interactions play a pivotal role in physiological and pathological processes, but their detection is difficult, especially in aged and fixed human brain tissue. We used the in-situ proximity ligation assay (PLA) to broaden the range of molecular interactions assessable in-situ in the human neuropathology. We adapted fluorescent in-situ PLA to detect ubiquitin-modified proteins in human brains with Alzheimer's disease (AD), including approaches for the management of autofluorescence and quantification using a high-content image analysis system. We confirmed that phosphorylated microtubule-associated protein tau (Serine202, Threonine205) aggregates were modified by ubiquitin and that phospho-tau-ubiquitin complexes were increased in hippocampal and frontal cortex regions in AD compared to non-AD brains. Overall, we refined PLA for use in human neuropathology, which has revealed a profound change in the distribution of ubiquitin in AD brain and its association with characteristic tau pathologies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Corteza Cerebral/metabolismo , Ubiquitina/metabolismo , Encéfalo/metabolismo , Proteínas Ubiquitinadas/metabolismo
4.
Res Sq ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824944

RESUMEN

Examination of healthy and diseased human brain is essential to translational neuroscience. Protein-protein interactions play a pivotal role in physiological and pathological processes, but their detection is difficult, especially in aged and fixed human brain tissue. We used the proximity ligation assay (PLA) to broaden the range of molecular interactions assessable in-situ in human neuropathology. We adapted fluorescent in-situ PLA to detect ubiquitin-modified proteins in human brains with Alzheimer's disease (AD), including approaches for the management of autofluorescence and quantification using a high-content image analysis system. We confirmed that hyperphosphorylated microtubule-associated protein tau (Serine202, Threonine205) aggregates were modified by ubiquitin and that phospho-tau-ubiquitin complexes were increased in hippocampal and frontal cortex regions in AD compared to non-AD brains. Overall, we refined PLA for use in human neuropathology, which has revealed a profound change in the distribution of ubiquitin in AD brain and its association with characteristic tau pathologies.

5.
Front Integr Neurosci ; 16: 821850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757100

RESUMEN

We report in a companion paper that in the mouse brain, in contrast to the 1,000-fold variation in local neuronal densities across sites, capillary density (measured both as capillary volume fraction and as density of endothelial cells) show very little variation, of the order of only fourfold. Here we confirm that finding in the rat brain and, using published rates of local blood flow and glucose use at rest, proceed to show that what small variation exists in capillary density across sites in the rat brain is strongly and linearly correlated to variations in local rates of brain metabolism at rest. Crucially, we show that such variations in local capillary density and brain metabolism are not correlated with local variations in neuronal density, which contradicts expectations that use-dependent self-organization would cause brain sites with more neurons to have higher capillary densities due to higher energetic demands. In fact, we show that the ratio of endothelial cells per neuron serves as a linear indicator of average blood flow and glucose use per neuron at rest, and both increase as neuronal density decreases across sites. In other words, because of the relatively tiny variation in capillary densities compared to the large variation in neuronal densities, the anatomical infrastructure of the brain is such that those sites with fewer neurons have more energy supplied per neuron, which matches a higher average rate of energy use per neuron, compared to sites with more neurons. Taken together, our data support the interpretation that resting brain metabolism is not demand-based, but rather limited by its capillary supply, and raise multiple implications for the differential vulnerability of diverse brain areas to disease and aging.

6.
Proc Natl Acad Sci U S A ; 116(30): 15253-15261, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285343

RESUMEN

Because the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization. Instead, the ratio between volumes of gray and white matter is universally predicted by the same equation that predicts the degree of folding of the cerebral cortex, given the clade-specific scaling of cortical thickness, such that the volume of the gray matter (or the ratio of gray to total cortical volumes) divided by the square root of cortical thickness is a universal function of total cortical volume, regardless of the number of cortical neurons. Thus, the very mechanism that we propose to generate cortical folding also results in compactness of the white matter to a predictable degree across a wide variety of mammalian species.


Asunto(s)
Corteza Cerebral/anatomía & histología , Sustancia Gris/anatomía & histología , Neuronas/citología , Sustancia Blanca/anatomía & histología , Animales , Artiodáctilos/anatomía & histología , Artiodáctilos/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Conectoma , Sustancia Gris/citología , Sustancia Gris/fisiología , Humanos , Neuronas/fisiología , Tamaño de los Órganos/fisiología , Especificidad de Órganos , Primates/anatomía & histología , Primates/fisiología , Roedores/anatomía & histología , Roedores/fisiología , Escandentios/anatomía & histología , Escandentios/fisiología , Sustancia Blanca/citología , Sustancia Blanca/fisiología
7.
Proc Natl Acad Sci U S A ; 113(34): 9617-22, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503881

RESUMEN

Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume.


Asunto(s)
Evolución Biológica , Sustancia Gris/citología , Neuronas/citología , Corteza Prefrontal/citología , Sustancia Blanca/citología , Animales , Recuento de Células , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Humanos , Masculino , Microtomía , Neuronas/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Primates , Especificidad de la Especie , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología
8.
Front Neuroanat ; 7: 28, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24032005

RESUMEN

The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas.

9.
Front Neuroanat ; 7: 3, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23576961

RESUMEN

Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA