Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Health Expect ; 26(6): 2293-2301, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503783

RESUMEN

BACKGROUND: Chronic diseases are associated with a range of functional and psychosocial consequences that can adversely affect patients' quality of life (QoL). Haemochromatosis (HC) is a genetically heterogeneous disorder characterized by chronic iron overload that can ultimately lead to multiple organ dysfunction. Clinical diagnosis remains challenging due to the nonspecificity of symptoms and a lack of confirmatory genotyping in a substantial proportion of patients. Illness perception among HC patients has not been extensively investigated, lacking relevant information on how to improve their QoL. METHODS: We present the results of the first worldwide survey conducted in nearly 1500 HC respondents, in which we collected essential demographic information and identified the aspects that concern HC patients the most. RESULTS: Out of all the participants, 45.3% (n = 676) voiced their concern about physical and psychological consequences such as HC-related arthropathies, which can ultimately affect their social functioning. A similar proportion of patients (n = 635, 42.5%) also consider that better-informed doctors are key for improved HC disease management. Taking a patient-centred approach, we expose differences in patients' disease perspective by social and economic influences. CONCLUSIONS: We identify potential targets to improve patients' health-related QoL and reflect on strategic measures to foster gender equity in access to health resources. Finally, we make a call for a highly coordinated effort across a range of public policy areas to empower participants in the HC research process and design. PATIENT OR PUBLIC CONTRIBUTION: Nearly 1500 patients with hereditary HC responded to an anonymized online survey in which research and clinical priorities were addressed regarding this chronic and rare disease.


Asunto(s)
Hemocromatosis , Calidad de Vida , Humanos , Calidad de Vida/psicología , Hemocromatosis/genética , Hemocromatosis/terapia , Encuestas y Cuestionarios , Investigación
2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373084

RESUMEN

Congenital dyserythropoietic anemia type II (CDA II) is an inherited autosomal recessive blood disorder which belongs to the wide group of ineffective erythropoiesis conditions. It is characterized by mild to severe normocytic anemia, jaundice, and splenomegaly owing to the hemolytic component. This often leads to liver iron overload and gallstones. CDA II is caused by biallelic mutations in the SEC23B gene. In this study, we report 9 new CDA II cases and identify 16 pathogenic variants, 6 of which are novel. The newly reported variants in SEC23B include three missenses (p.Thr445Arg, p.Tyr579Cys, and p.Arg701His), one frameshift (p.Asp693GlyfsTer2), and two splicing variants (c.1512-2A>G, and the complex intronic variant c.1512-3delinsTT linked to c.1512-16_1512-7delACTCTGGAAT in the same allele). Computational analyses of the missense variants indicated a loss of key residue interactions within the beta sheet and the helical and gelsolin domains, respectively. Analysis of SEC23B protein levels done in patient-derived lymphoblastoid cell lines (LCLs) showed a significant decrease in SEC23B protein expression, in the absence of SEC23A compensation. Reduced SEC23B mRNA expression was only detected in two probands carrying nonsense and frameshift variants; the remaining patients showed either higher gene expression levels or no expression changes at all. The skipping of exons 13 and 14 in the newly reported complex variant c.1512-3delinsTT/c.1512-16_1512-7delACTCTGGAAT results in a shorter protein isoform, as assessed by RT-PCR followed by Sanger sequencing. In this work, we summarize a comprehensive spectrum of SEC23B variants, describe nine new CDA II cases accounting for six previously unreported variants, and discuss innovative therapeutic approaches for CDA II.


Asunto(s)
Anemia Diseritropoyética Congénita , Humanos , Anemia Diseritropoyética Congénita/genética , Anemia Diseritropoyética Congénita/metabolismo , Mutación , Mutación Missense , Exones , Alelos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Genes (Basel) ; 12(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946929

RESUMEN

Hereditary hemochromatosis (HH) is an iron metabolism disease clinically characterized by excessive iron deposition in parenchymal organs such as liver, heart, pancreas, and joints. It is caused by mutations in at least five different genes. HFE hemochromatosis is the most common type of hemochromatosis, while non-HFE related hemochromatosis are rare cases. Here, we describe six new patients of non-HFE related HH from five different families. Two families (Family 1 and 2) have novel nonsense mutations in the HFE2 gene have novel nonsense mutations (p.Arg63Ter and Asp36ThrfsTer96). Three families have mutations in the TFR2 gene, one case has one previously unreported mutation (Family A-p.Asp680Tyr) and two cases have known pathogenic mutations (Family B and D-p.Trp781Ter and p.Gln672Ter respectively). Clinical, biochemical, and genetic data are discussed in all these cases. These rare cases of non-HFE related hereditary hemochromatosis highlight the importance of an earlier molecular diagnosis in a specialized center to prevent serious clinical complications.


Asunto(s)
Proteínas Ligadas a GPI/genética , Proteína de la Hemocromatosis/genética , Hemocromatosis/genética , Receptores de Transferrina/genética , Adulto , Codón sin Sentido/genética , Femenino , Proteínas Ligadas a GPI/metabolismo , Hemocromatosis/fisiopatología , Proteína de la Hemocromatosis/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Linaje , Receptores de Transferrina/metabolismo
5.
Acta Neuropathol ; 141(4): 565-584, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33547932

RESUMEN

Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington , ARN Pequeño no Traducido/farmacología , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Expansión de Repetición de Trinucleótido
6.
Front Physiol ; 10: 1063, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572203

RESUMEN

Congenital Dyserythropoietic Anemia (CDA) is a heterogeneous group of hematological disorders characterized by chronic hyporegenerative anemia and distinct morphological abnormalities of erythroid precursors in the bone marrow. In many cases, a final diagnosis is not achieved due to different levels of awareness for the diagnosis of CDAs and lack of use of advanced diagnostic procedures. Researchers have identified five major types of CDA: types I, II, III, IV, and X-linked dyserythropoietic anemia and thrombocytopenia (XLDAT). Proper management in CDA is still unsatisfactory, as the different subtypes of CDA have different genetic causes and different but overlapping patterns of signs and symptoms. For this reason, we developed a new telemedicine tool that will help doctors to achieve a faster diagnostic for this disease. Using open access code, we have created a responsive webpage named CoDysAn (Congenital Dyserythropoietic Anemia) that includes practical information for CDA awareness and a step-by-step diagnostic tool based on a CDA algorithm. The site is currently available in four languages (Catalan, Spanish, Italian, and English). This telemedicine webpage is available at http://www.codysan.eu.

7.
Biochem Biophys Res Commun ; 496(4): 1082-1087, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29397069

RESUMEN

The translation initiation machinery is emerging as an important target for therapeutic intervention, with potential in the treatment of cancer, viral infections, and muscle wasting. Amongst the targets for pharmacological control of translation initiation is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is essential for cap-dependent translation initiation. We set out to explore the system-wide impact of a reduction of functional eIF4A. To this end, we investigated the effect of deletion of TIF1, one of the duplicate genes that produce eIF4A in yeast, through synthetic genetic array interactions and system-wide changes in GFP-tagged protein abundances. We show that there is a biological response to deletion of the TIF1 gene that extends through the proteostasis network. Effects of the deletion are apparent in processes as distributed as chromatin remodelling, ribosome biogenesis, amino acid metabolism, and protein trafficking. The results from this study identify protein complexes and pathways that will make ideal targets for combination therapies with eIF4A inhibitors.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Factor 4A Eucariótico de Iniciación/genética , Pérdida de Heterocigocidad/genética , Biosíntesis de Proteínas/genética , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica/genética
8.
J Clin Invest ; 126(11): 4319-4330, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721240

RESUMEN

Huntington's disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (HTT) gene exon 1. This expansion encodes a mutant protein whose abnormal function is traditionally associated with HD pathogenesis; however, recent evidence has also linked HD pathogenesis to RNA stable hairpins formed by the mutant HTT expansion. Here, we have shown that a locked nucleic acid-modified antisense oligonucleotide complementary to the CAG repeat (LNA-CTG) preferentially binds to mutant HTT without affecting HTT mRNA or protein levels. LNA-CTGs produced rapid and sustained improvement of motor deficits in an R6/2 mouse HD model that was paralleled by persistent binding of LNA-CTG to the expanded HTT exon 1 transgene. Motor improvement was accompanied by a pronounced recovery in the levels of several striatal neuronal markers severely impaired in R6/2 mice. Furthermore, in R6/2 mice, LNA-CTG blocked several pathogenic mechanisms caused by expanded CAG RNA, including small RNA toxicity and decreased Rn45s expression levels. These results suggest that LNA-CTGs promote neuroprotection by blocking the detrimental activity of CAG repeats within HTT mRNA. The present data emphasize the relevance of expanded CAG RNA to HD pathogenesis, indicate that inhibition of HTT expression is not required to reverse motor deficits, and further suggest a therapeutic potential for LNA-CTG in polyglutamine disorders.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteína Huntingtina , Enfermedad de Huntington , ARN sin Sentido , Repeticiones de Trinucleótidos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/biosíntesis , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Masculino , Ratones , Ratones Transgénicos , ARN sin Sentido/genética , ARN sin Sentido/farmacología
9.
BMC Mol Biol ; 17(1): 21, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27578149

RESUMEN

BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E) plays a pivotal role in the control of cap-dependent translation initiation, modulates the fate of specific mRNAs, occurs in processing bodies (PBs) and is required for formation of stress granules (SGs). In this study, we focused on the subcellular localization of a representative compendium of eIF4E protein isoforms, particularly on the less studied members of the human eIF4E protein family, eIF4E2 and eIF4E3. RESULTS: We showed that unlike eIF4E1, its less studied isoform eIF4E3_A, encoded by human chromosome 3, localized to stress granules but not PBs upon both heat shock and arsenite stress. Furthermore, we found that eIF4E3_A interacts with human translation initiation factors eIF4G1, eIF4G3 and PABP1 in vivo and sediments into the same fractions as canonical eIF4E1 during polysome analysis in sucrose gradients. Contrary to this finding, the truncated human eIF4E3 isoform, eIF4E3_B, showed no localization to SGs and no binding to eIF4G. We also highlighted that eIF4E2 may exhibit distinct functions under different stresses as it readily localizes to P-bodies during arsenite and heat stresses, whereas it is redirected to stress granules only upon heat shock. We extended our study to a number of protein variants, arising from alternative mRNA splicing, of each of the three eIF4E isoforms. Our results surprisingly uncovered differences in the ability of eIF4E1_1 and eIF4E1_3 to form stress granules in response to cellular stresses. CONCLUSION: Our comparison of all three human eIF4E isoforms and their protein variants enriches the intriguing spectrum of roles attributed to the eukaryotic initiation translation factors of the 4E family, which exhibit a distinctive localization within different RNA granules under different stresses. The localization of eIF4E3_A to stress granules, but not to processing bodies, along with its binding to eIF4G and PABP1 suggests a role of human eIF4E3_A in translation initiation rather than its involvement in a translational repression and mRNA decay and turnover. The localization of eIF4E2 to stress granules under heat shock but not arsenite stress indicates its distinct function in cellular response to these stresses and points to the variable protein content of SGs as a consequence of different stress insults.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Unión a Caperuzas de ARN/metabolismo , Secuencia de Aminoácidos , Línea Celular , Clonación Molecular , Citosol/metabolismo , Factor 4E Eucariótico de Iniciación/análisis , Factor 4E Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Proteína I de Unión a Poli(A)/análisis , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión a Caperuzas de ARN/análisis , Proteínas de Unión a Caperuzas de ARN/genética , ARN Mensajero/genética , Alineación de Secuencia
10.
J Biochem Mol Toxicol ; 26(3): 94-100, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22162108

RESUMEN

The mycalamides belong to a family of protein synthesis inhibitors noted for antifungal, antitumour, antiviral, immunosuppressive, and nematocidal activities. Here we report a systematic analysis of the role of drug efflux pumps in mycalamide resistance and the first isolation of mycalamide E. In human cell lines, neither P-glycoprotein overexpression nor the use of efflux pump inhibitors significantly modulated mycalamide A toxicity in the systems tested. In Saccharomyces cerevisiae, it appears that mycalamide A is subject to efflux by the principle mediator of xenobiotic efflux, Pdr5p along with the major facilitator superfamily pump Tpo1p. Mycalamide E showed a similar efflux profile. These results suggest that future drugs based on the mycalamides are likely to be valuable in situations where efflux pump-based resistance leads to failure of other chemotherapeutic approaches, although efflux may be a mediator of resistance in antifungal applications.


Asunto(s)
Antifúngicos/farmacología , Toxinas Marinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Piranos/farmacología , Animales , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Eliminación de Gen , Humanos , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Poríferos/química , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Piranos/química , Piranos/aislamiento & purificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...