Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1132228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925963

RESUMEN

The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 µg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.

2.
Sci Rep ; 12(1): 15162, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071148

RESUMEN

Adequate intake of micronutrients is necessary to reduce widespread health issues linked to low intake of iron (Fe), zinc (Zn), boron (B), copper (Cu), and manganese (Mn). Because more than two billion people suffer from micronutrient deficiency globally, to address this problem, highly-nutritious ancestral Peruvian crops like tarwi can be an important component of food security. Thus, our work explores the tarwi micronutrient variability to select biofortified genotypes without affecting seed size and weight. Tarwi is a biofortified food because of its seeds' Fe, Zn, and B content. Furthermore, Boron showed a positive correlation between seed size and weight. At the same time, copper showed a negative correlation. Finally, six accessions (P14, P16, P21, T05, T08, and T25) that are biofortified for Fe, Zn, and B with excellent seed size and weight and with adequate levels of Cu and Mn; adding value to Peruvian biodiversity at a low cost is a starting point for a breeding program to prevent micronutrient disorders.


Asunto(s)
Lupinus , Oligoelementos , Boro , Cobre , Productos Agrícolas/genética , Humanos , Lupinus/genética , Manganeso , Micronutrientes , Fitomejoramiento , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...