Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1298340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328302

RESUMEN

Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell. Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents. Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance. Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.

2.
Resusc Plus ; 17: 100576, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38370313

RESUMEN

Aim: Out-of-hospital cardiac arrest is a major health problem, and the overall survival rate is low (4.6%-16.4%). The initiation of the current chain of survival depends on the presence of a witness of the cardiac arrest, which is not present in 29.7%-63.4% of the cases. Furthermore, a delay in starting this chain is common in witnessed out-of-hospital cardiac arrest. This project aims to reduce morbidity and mortality due to out-of-hospital cardiac arrest by developing a smartwatch-based solution to expedite the chain of survival in the case of (un)witnessed out-of-hospital cardiac arrest. Methods: Within the 'Beating Cardiac Arrest' project, we aim to develop a demonstrator product that detects out-of-hospital cardiac arrest using photoplethysmography and accelerometer analysis, and autonomously alerts emergency medical services. A target group study will be performed to determine who benefits the most from this product. Furthermore, several clinical studies will be conducted to capture or simulate data on out-of-hospital cardiac arrest cases, as to develop detection algorithms and validate their diagnostic performance. For this, the product will be worn by patients at high risk for out-of-hospital cardiac arrest, by volunteers who will temporarily interrupt blood flow in their arm by inflating a blood pressure cuff, and by patients who undergo cardiac electrophysiologic and implantable cardioverter defibrillator testing procedures. Moreover, studies on psychosocial and ethical acceptability will be conducted, consisting of surveys, focus groups, and interviews. These studies will focus on end-user preferences and needs, to ensure that important individual and societal values are respected in the design process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...