Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451841

RESUMEN

Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).

2.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217932

RESUMEN

The embryonal renal cancer Wilms tumor (WT) accounts for 7% of all children's malignancies. Its most frequent molecular defect is represented by DNA methylation abnormalities at the imprinted 11p15.5 region. Multiple imprinted methylation alterations dictated by chromosome copy-number variations have been recently demonstrated in adult cancers, raising the question of whether multiple imprinted loci were also affected in WT. To address this issue, we analyzed DNA methylation and chromosome profiles of 7 imprinted loci in 48 WT samples. The results demonstrated that methylation abnormalities of multiple imprinted loci occurred in 35% of the cases, but that they were associated with either chromosome aberrations or normal chromosome profiles. Multiple imprinted methylation changes were correlated with tumor stage and presence of metastasis, indicating that these epimutations were more frequent in highly aggressive tumors. When chromosome profiles were affected, these alterations were extended to flanking cancer driver genes. Overall, this study demonstrates the presence of multiple imprinted methylation defects in aggressive WTs and suggests that the mechanism by which they arise in embryonal and adult cancers is different.

3.
Biomolecules ; 10(5)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438765

RESUMEN

The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.


Asunto(s)
Proteínas Bacterianas/genética , Brucella abortus/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo
4.
Cancer Lett ; 457: 119-128, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31103718

RESUMEN

Wilms tumor is an embryonic renal cancer that typically presents in early childhood and accounts for 7% of all paediatric cancers. Different genetic alterations have been described in this malignancy, however, only a few of them are associated with a majority of Wilms tumors. Alterations in DNA methylation, in contrast, are frequent molecular defects observed in most cases of Wilms tumors. How these epimutations are established in this tumor is not yet completely clear. The recent identification of the molecular actors required for the epigenetic reprogramming during embryogenesis suggests novel possible mechanisms responsible for the DNA methylation defects in Wilms tumor. Here, we provide an overview of the DNA methylation alterations observed in this malignancy and discuss the distinct molecular mechanisms by which these epimutations can arise.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Genes del Tumor de Wilms , Neoplasias Renales/genética , Tumor de Wilms/genética , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Fenotipo , Transducción de Señal , Tumor de Wilms/metabolismo , Tumor de Wilms/patología
5.
Exp Mol Med ; 51(4): 1-17, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992425

RESUMEN

CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/genética , División Celular/fisiología , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Quinasas Ciclina-Dependientes/genética , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Fosforilación , Unión Proteica/genética , Unión Proteica/fisiología
6.
Neurobiol Dis ; 127: 210-222, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30831192

RESUMEN

Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.


Asunto(s)
Trastorno Autístico/metabolismo , Haploinsuficiencia , Neocórtex/metabolismo , Red Nerviosa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Conducta Social , Animales , Trastorno Autístico/genética , Conducta Animal/fisiología , Masculino , Ratones , Mutación Missense , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
7.
Genome Res ; 29(1): 29-39, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552103

RESUMEN

In breast cancer cells, some topologically associating domains (TADs) behave as hormonal gene regulation units, within which gene transcription is coordinately regulated in response to steroid hormones. Here we further describe that responsive TADs contain 20- to 100-kb-long clusters of intermingled estrogen receptor (ESR1) and progesterone receptor (PGR) binding sites, hereafter called hormone-control regions (HCRs). In T47D cells, we identified more than 200 HCRs, which are frequently bound by unliganded ESR1 and PGR. These HCRs establish steady long-distance inter-TAD interactions between them and organize characteristic looping structures with promoters in their TADs even in the absence of hormones in ESR1+-PGR+ cells. This organization is dependent on the expression of the receptors and is further dynamically modulated in response to steroid hormones. HCRs function as platforms that integrate different signals, resulting in some cases in opposite transcriptional responses to estrogens or progestins. Altogether, these results suggest that steroid hormone receptors act not only as hormone-regulated sequence-specific transcription factors but also as local and global genome organizers.


Asunto(s)
Receptor alfa de Estrógeno/biosíntesis , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Progesterona/farmacología , Receptores de Progesterona/biosíntesis , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Humanos , Células MCF-7 , Receptores de Progesterona/genética
8.
Cancers (Basel) ; 10(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301163

RESUMEN

Breast cancer prognosis and response to endocrine therapy strongly depends on the expression of the estrogen and progesterone receptors (ER and PR, respectively). Although much is known about ERα gene (ESR1) regulation after hormonal stimulation, how it is regulated in hormone-free condition is not fully understood. We used ER-/PR-positive breast cancer cells to investigate the role of PR in ESR1 regulation in the absence of hormones. We show that PR binds to the low-methylated ESR1 promoter and maintains both gene expression and DNA methylation of the ESR1 locus in hormone-deprived breast cancer cells. Depletion of PR reduces ESR1 expression, with a concomitant increase in gene promoter methylation. The high amount of methylation in the ESR1 promoter of PR-depleted cells persists after the stable re-expression of PR and inhibits PR binding to this genomic region. As a consequence, the rescue of PR expression in PR-depleted cells is insufficient to restore ESR1 expression. Consistently, DNA methylation impedes PR binding to consensus progesterone responsive elements. These findings contribute to understanding the complex crosstalk between PR and ER and suggest that the analysis of ESR1 promoter methylation in breast cancer cells can help to design more appropriate targeted therapies for breast cancer patients.

9.
Nucleic Acids Res ; 44(17): 8165-78, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27257070

RESUMEN

ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Islas de CpG/genética , Epigénesis Genética , Sitios Genéticos , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Modelos Genéticos
10.
Cell Rep ; 3(6): 2021-32, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23770244

RESUMEN

Polo-like kinase 1 (PLK1) is a key regulator of cell division and is overexpressed in many types of human cancers. Compared to its well-characterized role in mitosis, little is known about PLK1 functions in interphase. Here, we report that PLK1 mediates estrogen receptor (ER)-regulated gene transcription in human breast cancer cells. PLK1 interacts with ER and is recruited to ER cis-elements on chromatin. PLK1-coactivated genes included classical ER target genes such as Ps2, Wisp2, and Serpina3 and were enriched in developmental and tumor-suppressive functions. Performing large-scale phosphoproteomics of estradiol-treated MCF7 cells in the presence or absence of the specific PLK1 inhibitor BI2536, we identified several PLK1 end targets involved in transcription, including the histone H3K4 trimethylase MLL2, the function of which on ER target genes was impaired by PLK1 inhibition. Our results propose a mechanism for the tumor-suppressive role of PLK1 in mammals as an interphase transcriptional regulator.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Estrógenos/genética , Benzamidas/farmacología , Neoplasias de la Mama/enzimología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Compuestos Heterocíclicos con 2 Anillos/farmacología , Humanos , Células MCF-7 , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Pteridinas , Receptores de Estrógenos/metabolismo , Transducción de Señal , Transcripción Genética , Células Tumorales Cultivadas , Quinasa Tipo Polo 1
11.
Mol Cell ; 44(3): 361-72, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22055183

RESUMEN

The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Metilasas de Modificación del ADN/metabolismo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito , Ubiquitina-Proteína Ligasas
12.
Endocr Dev ; 14: 1-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19293570

RESUMEN

The parent-of-origin-dependent expression of IGF2 and H19 is controlled by the imprinting center 1 (IC1) consisting of a methylation-sensitive chromatin insulator. IC1 is normally methylated on the paternal chromosome and nonmethylated on the maternal chromosome. We found that 22 cases in a large cohort of patients affected by Beckwith-Wiedemann syndrome (BWS) had IC1 methylated on both parental chromosomes, resulting in biallelic activation of IGF2 and biallelic silencing of H19. These individuals had marked macrosomia and high incidence of Wilms' tumor. A subset of these patients had 1.4- to 1.8-kb deletions with hypermethylation of the remaining IC1 region and fully penetrant BWS phenotype when transmitted maternally. Another subset of individuals with IC1 hypermethylation had a similar clinical phenotype but no mutation in the local vicinity. All these cases were sporadic and in at least two families affected and unaffected members shared the same maternal IC1 allele but not the abnormal maternal epigenotype. Similarly, no IC1 deletion was detected in 10 nonsyndromic Wilms' tumors with IC1 hypermethylation. In conclusion, methylation defects at the IGF2-H19 locus can result from inherited mutations of the imprinting center and have high recurrence risk or arise independently from the sequence context and not transmitted to the progeny.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Epigénesis Genética , Factor II del Crecimiento Similar a la Insulina/genética , Neoplasias Renales/genética , Tumor de Wilms/genética , Metilación de ADN , Humanos , Mutación
13.
Eur J Hum Genet ; 17(5): 611-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19092779

RESUMEN

Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions (ICRs) of these genes. It was recently reported that some patients with imprinting disorders have a more generalised imprinting defect, with hypomethylation at a range of maternally methylated ICRs. We report a cohort of 149 patients with a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS), including 81 with maternal hypomethylation of the KCNQ1OT1 ICR. Methylation analysis of 11 ICRs in these patients showed that hypomethylation affecting multiple imprinted loci was restricted to 17 patients with hypomethylation of the KCNQ1OT1 ICR, and involved only maternally methylated loci. Both partial and complete hypomethylation was demonstrated in these cases, suggesting a possible postzygotic origin of a mosaic imprinting error. Some ICRs, including the PLAGL1 and GNAS/NESPAS ICRs implicated in the aetiology of transient neonatal diabetes and pseudohypoparathyroidism type 1b, respectively, were more frequently affected than others. Although we did not find any evidence for mutation of the candidate gene DNMT3L, these results support the hypotheses that trans-acting factors affect the somatic maintenance of imprinting at multiple maternally methylated loci and that the clinical presentation of these complex cases may reflect the loci and tissues affected with the epigenetic abnormalities.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Proteínas de Ciclo Celular/genética , Metilación de ADN , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Impresión Genómica , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Síndrome de Beckwith-Wiedemann/patología , Cromograninas , ADN (Citosina-5-)-Metiltransferasas/genética , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
14.
PLoS One ; 3(3): e1849, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18365005

RESUMEN

BACKGROUND: Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC1 methylation status and is inconsistent with the proposed silencing function of the maternal IGF2 allele. Beckwith-Wiedemann and Silver-Russell patients with IC1 methylation defects have similar methylation defects at the IGF2 DMR0, consistent with IC1 regulating methylation at IGF2 in cis. In Wilms tumour, however, methylation profiles of IC1 and IGF2 DMR0 are indicative of methylation changes occurring on both parental alleles rather than in cis. CONCLUSIONS/SIGNIFICANCE: These results support a model in which DMR0 and IC1 have opposite susceptibilities to global hyper and hypomethylation during tumorigenesis independent of the parent of origin imprint. In contrast, during embryogenesis DMR0 is methylated or demethylated according to the germline methylation imprint at the IC1, indicating different mechanisms of imprinting loss in neoplastic and non-neoplastic cells.


Asunto(s)
Metilación de ADN , Trastornos del Crecimiento/genética , Factor II del Crecimiento Similar a la Insulina/genética , Neoplasias/genética , ARN no Traducido/genética , Trastornos del Crecimiento/congénito , Humanos , ARN Largo no Codificante
15.
Hum Mol Genet ; 17(10): 1427-35, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18245780

RESUMEN

The parent of origin-dependent expression of the IGF2 and H19 genes is controlled by the imprinting centre 1 (IC1) consisting in a methylation-sensitive chromatin insulator. Deletions removing part of IC1 have been found in patients affected by the overgrowth- and tumour-associated Beckwith-Wiedemann syndrome (BWS). These mutations result in the hypermethylation of the remaining IC1 region, loss of IGF2/H19 imprinting and fully penetrant BWS phenotype when maternally transmitted. We now report that 12 additional cases with IC1 hypermethylation have a similar clinical phenotype but showed neither a detectable deletion nor other mutation in the local vicinity. Likewise, no IC1 deletion was detected in 40 sporadic non-syndromic Wilms' tumours. A detailed analysis of the BWS patients showed that the hypermethylation variably affected the IC1 region and was generally mosaic. We observed that all these cases were sporadic and in at least two families affected and unaffected members shared the same maternal IC1 allele but not the abnormal maternal chromosome epigenotype. Furthermore, the chromosome with the imprinting defect derived from either the maternal grandfather or maternal grandmother. Overall, these results indicate that methylation-imprinting defects at the IGF2-H19 locus can result from inherited mutations of the IC and have high recurrence risk or arise independently from the sequence context and generally not transmitted to the progeny. Despite these differences, the epigenetic abnormalities are usually present in the patients in the mosaic form and probably acquired by post-zygotic de novo methylation. Distinguishing between these two groups of cases is important for genetic counselling.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , ARN no Traducido/genética , Tumor de Wilms/genética , Alelos , Síndrome de Beckwith-Wiedemann/diagnóstico , Factor de Unión a CCCTC , Segregación Cromosómica , Cromosomas Humanos Par 11 , Metilación de ADN , Proteínas de Unión al ADN/genética , Femenino , Eliminación de Gen , Haplotipos , Humanos , Italia , Masculino , Mutación , Linaje , ARN Largo no Codificante , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA