Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(732): eadg8357, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295186

RESUMEN

The gut microbiome harbors trillions of organisms that contribute to human health and disease. These bacteria can also affect the properties of medical drugs used to treat these diseases, and drugs, in turn, can reshape the microbiome. Research addressing interdependent microbiome-host-drug interactions thus has broad impact. In this Review, we discuss these interactions from the perspective of drug bioavailability, absorption, metabolism, excretion, toxicity, and drug-mediated microbiome modulation. We survey approaches that aim to uncover the mechanisms underlying these effects and opportunities to translate this knowledge into new strategies to improve the development, administration, and monitoring of medical drugs.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Preparaciones Farmacéuticas , Disponibilidad Biológica , Bacterias
2.
J Biol Chem ; 299(12): 105363, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863262

RESUMEN

Metformin is among the most prescribed medications worldwide and the first-line therapy for type 2 diabetes. However, gastrointestinal side effects are common and can be dose limiting. The total daily metformin dose frequently reaches several grams, and poor absorption results in high intestinal drug concentrations. Here, we report that metformin inhibits the activity of enteropeptidase and other digestive enzymes at drug concentrations predicted to occur in the human duodenum. Treatment of mouse gastrointestinal tissue with metformin reduces enteropeptidase activity; further, metformin-treated mice exhibit reduced enteropeptidase activity, reduced trypsin activity, and impaired protein digestion within the intestinal lumen. These results indicate that metformin-induced protein maldigestion could contribute to the gastrointestinal side effects and other impacts of this widely used drug.


Asunto(s)
Enteropeptidasa , Metformina , Proteolisis , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enteropeptidasa/metabolismo , Metformina/efectos adversos , Metformina/farmacología , Metformina/uso terapéutico , Proteolisis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Tripsina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
3.
mBio ; 12(4): e0065621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465018

RESUMEN

Human gut microbes exhibit a spectrum of cooperative and antagonistic interactions with their host and also with other microbes. The major Bacteroides host-targeting virulence factor, Bacteroides fragilis toxin (BFT), is produced as an inactive protoxin by enterotoxigenic B. fragilis strains. BFT is processed by the conserved bacterial cysteine protease fragipain (Fpn), which is also encoded in B. fragilis strains that lack BFT. In this report, we identify a secreted antibacterial protein (fragipain-activated bacteriocin 1 [Fab1]) and its cognate immunity protein (resistance to fragipain-activated bacteriocin 1 [RFab1]) in enterotoxigenic and nontoxigenic strains of B. fragilis. Although BFT and Fab1 share no sequence identity, Fpn also activates the Fab1 protoxin, resulting in its secretion and antibacterial activity. These findings highlight commonalities between host- and bacterium-targeting toxins in intestinal bacteria and suggest that antibacterial antagonism may promote the conservation of pathways that activate host-targeting virulence factors. IMPORTANCE The human intestine harbors a highly complex microbial community; interpersonal variation in this community can impact pathogen susceptibility, metabolism, and other aspects of health. Here, we identified and characterized a commensal-targeting antibacterial protein encoded in the gut microbiome. Notably, a shared pathway activates this antibacterial toxin and a host-targeting toxin. These findings highlight unexpected commonalities between host- and bacterium-targeting toxins in intestinal bacteria.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped , Intestinos/microbiología , Redes y Vías Metabólicas/genética , Animales , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Bacteriocinas/genética , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Femenino , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Ratones Endogámicos C57BL
5.
Nat Commun ; 10(1): 4665, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604953

RESUMEN

Synthetic gene oscillators have the potential to control timed functions and periodic gene expression in engineered cells. Such oscillators have been refined in bacteria in vitro, however, these systems have lacked the robustness and precision necessary for applications in complex in vivo environments, such as the mammalian gut. Here, we demonstrate the implementation of a synthetic oscillator capable of keeping robust time in the mouse gut over periods of days. The oscillations provide a marker of bacterial growth at a single-cell level enabling quantification of bacterial dynamics in response to inflammation and underlying variations in the gut microbiota. Our work directly detects increased bacterial growth heterogeneity during disease and differences between spatial niches in the gut, demonstrating the deployment of a precise engineered genetic oscillator in real-life settings.


Asunto(s)
Relojes Biológicos/genética , Microbioma Gastrointestinal , Biología Sintética/métodos , Animales , División Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Microorganismos Modificados Genéticamente/metabolismo , Microorganismos Modificados Genéticamente/fisiología , Imagen Óptica
6.
Elife ; 82019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31282860

RESUMEN

Iron storage proteins are essential for cellular iron homeostasis and redox balance. Ferritin proteins are the major storage units for bioavailable forms of iron. Some organisms lack ferritins, and it is not known how they store iron. Encapsulins, a class of protein-based organelles, have recently been implicated in microbial iron and redox metabolism. Here, we report the structural and mechanistic characterization of a 42 nm two-component encapsulin-based iron storage compartment from Quasibacillus thermotolerans. Using cryo-electron microscopy and x-ray crystallography, we reveal the assembly principles of a thermostable T = 4 shell topology and its catalytic ferroxidase cargo and show interactions underlying cargo-shell co-assembly. This compartment has an exceptionally large iron storage capacity storing over 23,000 iron atoms. Our results reveal a new approach for survival in diverse habitats with limited or fluctuating iron availability via an iron storage system able to store 10 to 20 times more iron than ferritin.


Asunto(s)
Bacillaceae/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Orgánulos/metabolismo , Bacillaceae/ultraestructura , Proteínas Bacterianas/química , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Ferritinas/química , Ferritinas/metabolismo , Homeostasis , Modelos Moleculares , Orgánulos/ultraestructura , Conformación Proteica
7.
Elife ; 82019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30719975

RESUMEN

One output arm of the sleep homeostat in Drosophila appears to be a group of neurons with projections to the dorsal fan-shaped body (dFB neurons) of the central complex in the brain. However, neurons that regulate the sleep homeostat remain poorly understood. Using neurogenetic approaches combined with Ca2+ imaging, we characterized synaptic connections between dFB neurons and distinct sets of upstream sleep-regulatory neurons. One group of the sleep-promoting upstream neurons is a set of circadian pacemaker neurons that activates dFB neurons via direct glutaminergic excitatory synaptic connections. Opposing this population, a group of arousal-promoting neurons downregulates dFB axonal output with dopamine. Co-activating these two inputs leads to frequent shifts between sleep and wake states. We also show that dFB neurons release the neurotransmitter GABA and inhibit octopaminergic arousal neurons. We propose that dFB neurons integrate synaptic inputs from distinct sets of upstream sleep-promoting circadian clock neurons, and arousal neurons.


Asunto(s)
Nivel de Alerta , Encéfalo/fisiología , Ritmo Circadiano , Drosophila/fisiología , Red Nerviosa/fisiología , Sueño , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...