Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Semin Cancer Biol ; 98: 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029868

RESUMEN

Hypoxia is intrinsic to tumours and contributes to malignancy and metastasis while hindering the efficiency of existing treatments. Epigenetic mechanisms play a crucial role in the regulation of hypoxic cancer cell programs, both in the initial phases of sensing the decrease in oxygen levels and during adaptation to chronic lack of oxygen. During the latter, the epigenetic regulation of tumour biology intersects with hypoxia-sensitive transcription factors in a complex network of gene regulation that also involves metabolic reprogramming. Here, we review the current literature on the epigenetic control of gene programs in hypoxic cancer cells. We highlight common themes and features of such epigenetic remodelling and discuss their relevance for the development of therapeutic strategies.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Hipoxia de la Célula/genética , Hipoxia/genética , Hipoxia/metabolismo , Neoplasias/patología , Oxígeno/metabolismo
2.
Elife ; 122023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150302

RESUMEN

Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures the early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naive mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.


Cannabis is the most widely used illicit drug in the world, with 4.3% of the global adult population estimated to have used it in the previous year. In particular, the consumption of cannabis by pregnant women has almost doubled in recent years and is particularly increased in those aged under 18. The main psychoactive component in cannabis, known as Δ9-THC, activates cannabinoid receptors in the brain, including the receptor CB1. Recent research has shown that CB1 is also active in the mouse embryo, but it remained unclear if Δ9-THC could also affect the development of an embryo. To better understand the potential effects of this exposure, scientists can study stem cells that develop into germ cells (which go on to form egg and sperm), which have been grown in the laboratory. Emerging research has shown that germ cells are particularly sensitive to changes in their environment and due to their role in reproduction, changes can have knock-on effects for embryos. Verdikt et al. studied the effects of Δ9-THC on mouse embryonic stem cells, finding that it caused them to multiply more quickly. This was dependent on both Δ9-THC binding to the CB1 receptor that causes the psychoactive effects of cannabis in the brain and an increased energy metabolism. Blocking an important metabolic pathway called glycolysis caused the Δ9-THC-treated cells to return to a normal multiplication rate. The exposed stem cells also gave rise to germ cells with abnormal metabolism and altered gene expression, suggesting that this metabolic 'memory' can be passed on to cells in the next developmental stage. Overall, the findings indicate that exposure to Δ9-THC alters the metabolism in early embryonic cells of mice and that these effects can be lasting. This emphasises the need for further research on the impact of cannabis use during pregnancy, particularly as the drug's availability is expected to increase significantly with changes in regulation. The work also contributes to research highlighting the inheritance of metabolism.


Asunto(s)
Dronabinol , Células Madre Pluripotentes , Animales , Ratones , Embarazo , Femenino , Humanos , Dronabinol/farmacología , Células Germinativas , Diferenciación Celular , Células Madre Embrionarias
3.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36993751

RESUMEN

Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naïve mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.

4.
Curr Top Dev Biol ; 152: 31-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36707214

RESUMEN

The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.


Asunto(s)
Señales (Psicología) , Epigénesis Genética , Humanos , Fenotipo , Metilación de ADN , Patrón de Herencia/genética
5.
EBioMedicine ; 79: 103985, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35429693

RESUMEN

BACKGROUND: The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS: We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS: We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION: A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING: Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin ¼, the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation ¼), « Les Amis des Instituts Pasteur à Bruxelles, asbl ¼, the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Represión Epigenética , Infecciones por VIH , VIH-1 , Ubiquitina-Proteína Ligasas , Latencia del Virus , Síndrome de Inmunodeficiencia Adquirida , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Metilación de ADN , Decitabina/metabolismo , Infecciones por VIH/genética , VIH-1/fisiología , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Latencia del Virus/genética
6.
Biol Reprod ; 105(3): 616-624, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34132770

RESUMEN

Metabolites control epigenetic mechanisms, and conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environment. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cell development. We explore the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodeling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.


Asunto(s)
Epigénesis Genética , Células Germinativas/crecimiento & desarrollo , Metaboloma , Animales , Epigenómica , Humanos , Metabolómica , Ratones , Ratas
7.
Vaccines (Basel) ; 9(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067608

RESUMEN

Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.

8.
Virus Res ; 293: 198260, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33316352

RESUMEN

Chronic infection with human immunodeficiency virus (HIV)-1 is characterized by accumulation of proviral sequences in the genome of target cells. Integration of viral DNA in patients on long-term antiretroviral therapy selectively persists at preferential loci, suggesting site-specific crosstalk of viral sequences and human genes. This crosstalk likely contributes to chronic HIV disease through modulation of host immune pathways and emergence of clonal infected cell populations. To systematically interrogate such effects, we undertook genome engineering to generate Jurkat cell models that replicate integration of HIV-1 long terminal repeat (LTR) sequences at the BTB and CNC Homolog 2 (BACH2) integration locus. This locus is a prominent HIV-1 integration gene in chronic infection, found in 30 % of long-term treated patients with mapped proviral integrations. Using five clonal models carrying an LTR-driven reporter at different BACH2 intergenic regions, we here show that LTR transcriptional activity is repressed in BACH2 regions associated with proviral-DNA integrations in vivo but not in a control region. Our data indicates that this repression is in part epigenetically regulated, particularly through DNA methylation. Importantly, we demonstrate that transcriptional activity of the LTR is independent of BACH2 gene transcription and vice versa in our models. This suggests no transcriptional interference of endogenous and HIV-1 promoters. Taken together, our study provides first insights into how activity of HIV-1 LTR sequences is regulated at the BACH2 locus as prominent example for a recurrently-detected integration gene in chronic infection. Given the importance of integration-site dependent virus/host crosstalk for chronic HIV disease, our findings for the BACH2 locus have potential implications for future therapeutic strategies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , VIH-1 , VIH-1/genética , Humanos , Infección Persistente , Regiones Promotoras Genéticas , Provirus/genética , Integración Viral
9.
Semin Immunopathol ; 42(2): 187-200, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047948

RESUMEN

Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Epigénesis Genética , Infecciones por VIH/genética , VIH-1/genética , Humanos , Latencia del Virus
10.
Curr Opin Virol ; 38: 63-69, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509794

RESUMEN

HIV-1 infection can be controlled but not cured by combination antiretroviral therapy. Indeed, the virus persists in treated individuals in viral reservoirs, the best described of which consisting in latently infected central memory CD4+ T cells. However, other cell types in other body compartments than in the peripheral blood contribute to HIV-1 persistence. Addressing the molecular mechanisms of HIV-1 persistence and their cell-specific and tissue-specific variations is thus crucial to develop HIV-1 curative strategies. CRISPR/Cas9 editing technologies have revolutionized genetic engineering by their high specificity and their versatility. Multiple applications now allow to investigate the molecular mechanisms of HIV-1 persistence. Here, we review recent advances in CRISPR-based technologies in deciphering HIV-1 gene expression regulation during persistence.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por VIH/virología , VIH-1/fisiología , Replicación Viral , Reservorios de Enfermedades , Edición Génica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Integración Viral , Latencia del Virus
11.
J Acquir Immune Defic Syndr ; 80(5): 605-613, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30768485

RESUMEN

OBJECTIVES: Few single latency-reversing agents (LRAs) have been tested in vivo, and only some of them have demonstrated an effect, albeit weak, on the decrease of latent reservoir. Therefore, other LRAs and combinations of LRAs need to be assessed. Here, we evaluated the potential of combined treatments of therapeutically promising LRAs, disulfiram and romidepsin. SETTING AND METHODS: We assessed the reactivation potential of individual disulfiram or simultaneous or sequential combined treatments with romidepsin in vitro in latently infected cell lines of T-lymphoid and myeloid origins and in ex vivo cultures of CD8-depleted peripheral blood mononuclear cells isolated from 18 HIV-1 combination antiretroviral therapy-treated individuals. RESULTS: We demonstrated heterogeneous reactivation effects of disulfiram in vitro in various cell lines of myeloid origin and no latency reversal neither in vitro in T-lymphoid cells nor ex vivo, even if doses corresponding to maximal plasmatic concentration or higher were tested. Disulfiram+romidepsin combined treatments produced distinct reactivation patterns in vitro. Ex vivo, the combined treatments showed a modest reactivation effect when used simultaneously as opposed to no viral reactivation for the corresponding sequential treatment. CONCLUSIONS: Exclusive reactivation effects of disulfiram in myeloid latency cell lines suggest that disulfiram could be a potential LRA for this neglected reservoir. Moreover, distinct reactivation profiles pinpoint heterogeneity of the latent reservoir and confirm that the mechanisms that contribute to HIV latency are diverse. Importantly, disulfiram+romidepsin treatments are not potent ex vivo and most likely do not represent an effective drug combination to achieve high levels of latency reversal in vivo.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Depsipéptidos/uso terapéutico , Disulfiram/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Fármacos Anti-VIH/administración & dosificación , Línea Celular , Depsipéptidos/administración & dosificación , Disulfiram/administración & dosificación , Quimioterapia Combinada , VIH-1/fisiología , Humanos
12.
Front Microbiol ; 10: 3060, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038533

RESUMEN

One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.

14.
Sci Rep ; 6: 34920, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725726

RESUMEN

Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.


Asunto(s)
VIH-1/genética , Proteína HMGA1a/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neuroglía/virología , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...