Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Zoonoses Public Health ; 66(7): 874-878, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493311

RESUMEN

We estimated that more than 11,000 people were exposed to highly pathogenic avian influenza viruses in EU/EEA countries over the outbreak period October 2016-September 2018 by cross-linking data submitted by Member States to European Food Safety Authority and EMPRES-i. A stronger framework for collecting human exposure data is required.


Asunto(s)
Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/virología , Animales , Animales Salvajes/virología , Aves/virología , Unión Europea , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología
2.
EFSA J ; 16(10): e05431, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32625713

RESUMEN

A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.

3.
EFSA J ; 16(11): e05493, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32625770

RESUMEN

Avian influenza viruses infect domestic poultry and wild birds as well as humans. In poultry, depending on whether these viruses are of high pathogenicity (HPAI) or low pathogenicity (LPAI), the infection can cause different clinical signs, with HPAI causing high mortality in poultry flocks. In order to ensure early detection of avian influenza viruses, surveillance in poultry and wild birds is considered essential. In 2010, the European Commission provided some guidelines to Member States (MSs) on how this surveillance should be carried out, both in poultry and wild birds. EFSA received a mandate from the Commission to collate, validate, analyse, and summarise in an annual report the data resulting from the ongoing avian influenza surveillance programmes established in the different MSs. To deliver on this mandate, EFSA, in collaboration with the Standing Working Group on AI, initiated its activities with the drafting of a scientific report where the future vision of this collection framework was presented. Initial and later drafts of this report were shared with MS representatives in order to get feedback on the practicalities concerning the collection and submission of avian influenza surveillance data to EFSA. In the present report, the data that MSs are legally requested to submit to EFSA ('mandatory') and also the data that would be important to collect in order to optimise the outputs ('desirable') are described. A number of actions that would lead to the optimal data collection are also presented and the added value to MSs is discussed. A step-by-step implementation of the outlined actions is anticipated, with a description of the initial collection framework for 2019 being included in this report.

4.
EFSA J ; 16(11): e05494, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32625771

RESUMEN

This update on the African swine fever (ASF) outbreaks in the EU demonstrated that out of all tested wild boar found dead, the proportion of positive samples peaked in winter and summer. For domestic pigs only, a summer peak was evident. Despite the existence of several plausible factors that could result in the observed seasonality, there is no evidence to prove causality. Wild boar density was the most influential risk factor for the occurrence of ASF in wild boar. In the vast majority of introductions in domestic pig holdings, direct contact with infected domestic pigs or wild boar was excluded as the route of introduction. The implementation of emergency measures in the wild boar management zones following a focal ASF introduction was evaluated. As a sole control strategy, intensive hunting around the buffer area might not always be sufficient to eradicate ASF. However, the probability of eradication success is increased after adding quick and safe carcass removal. A wider buffer area leads to a higher success probability; however it implies a larger intensive hunting area and the need for more animals to be hunted. If carcass removal and intensive hunting are effectively implemented, fencing is more useful for delineating zones, rather than adding substantially to control efficacy. However, segments of fencing will be particularly useful in those areas where carcass removal or intensive hunting is difficult to implement. It was not possible to demonstrate an effect of natural barriers on ASF spread. Human-mediated translocation may override any effect of natural barriers. Recommendations for ASF control in four different epidemiological scenarios are presented.

5.
EFSA J ; 16(3): e05240, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32625858

RESUMEN

Between 16 November 2017 and 15 February 2018, one highly pathogenic avian influenza (HPAI) A(H5N6) and five HPAI A(H5N8) outbreaks in poultry holdings, two HPAI A(H5N6) outbreaks in captive birds and 22 HPAI A(H5N6) wild bird events were reported within Europe. There is a lower incursion of HPAI A(H5N6) in poultry compared to HPAI A(H5N8). There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Clinical signs in ducks infected with HPAI A(H5N8) seemed to be decreasing, based on reports from Bulgaria. However, HPAI A(H5N8) is still present in Europe and is widespread in neighbouring areas. The majority of mortality events of wild birds from HPAIV A(H5) in this three-month period involved single birds. This indicates that the investigation of events involving single dead birds of target species is important for comprehensive passive surveillance for HPAI A(H5). Moreover, 20 low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The first human case due to avian influenza A(H7N4) was notified in China underlining the threat that newly emerging avian influenza viruses pose for transmission to humans. Close monitoring is required of the situation in Africa and the Middle East with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and risk for further dissemination of virus. The risk of HPAI introduction from Third countries via migratory wild birds to Europe is still considered much lower for wild birds crossing the southern borders compared to birds crossing the north-eastern borders, whereas the introduction via trade is still very to extremely unlikely.

6.
EFSA J ; 16(4): e05259, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32625888

RESUMEN

Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen of salamanders. Despite limited surveillance, Bsal was detected in kept salamanders populations in Belgium, Germany, Spain, the Netherlands and the United Kingdom, and in wild populations in some regions of Belgium, Germany and the Netherlands. According to niche modelling, at least part of the distribution range of every salamander species in Europe overlaps with the climate conditions predicted to be suitable for Bsal. Passive surveillance is considered the most suitable approach for detection of Bsal emergence in wild populations. Demonstration of Bsal absence is considered feasible only in closed populations of kept susceptible species. In the wild, Bsal can spread by both active (e.g. salamanders, anurans) and passive (e.g. birds, water) carriers; it is most likely maintained/spread in infected areas by contacts of salamanders or by interactions with anurans, whereas human activities most likely cause Bsal entry into new areas and populations. In kept amphibians, Bsal contamination via live silent carriers (wild birds and anurans) is considered extremely unlikely. The risk-mitigation measures that were considered the most feasible and effective: (i) for ensuring safer international or intra-EU trade of live salamanders, are: ban or restrictions on salamander imports, hygiene procedures and good practice manuals; (ii) for protecting kept salamanders from Bsal, are: identification and treatment of positive collections; (iii) for on-site protection of wild salamanders, are: preventing translocation of wild amphibians and release/return to the wild of kept/temporarily housed wild salamanders, and setting up contact points/emergency teams for passive surveillance. Combining several risk-mitigation measures improve the overall effectiveness. It is recommended to: introduce a harmonised protocol for Bsal detection throughout the EU; improve data acquisition on salamander abundance and distribution; enhance passive surveillance activities; increase public and professionals' awareness; condition any movement of captive salamanders on Bsal known health status.

7.
EFSA J ; 16(6): e05358, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32625951

RESUMEN

Between 16 February and 15 May 2018, three highly pathogenic avian influenza (HPAI) A(H5N6) and 11 HPAI A(H5N8) outbreaks in poultry holdings, one HPAI A(H5N6) and one HPAI A(H5N8) outbreak in captive birds, and 55 HPAI A(H5N6) wild bird events were reported in Europe. There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Fewer HPAI wild bird cases have been detected than during the same period of previous year. Most of mortality events among wild birds involved single birds and species listed in the revised list of target species for passive surveillance. Raptor species constitute 74% of the HPAI-infected wild birds found dead. Those raptor species probably became infected by hunting or scavenging HPAI virus-positive birds, and so raptor cases may predominate later in the course of an HPAI epidemic. Despite the important HPAI virus incursion via wild birds there have been few associated HPAI A(H5N6) outbreaks in poultry. Fifteen low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The situation in Africa and the Middle East should be closely monitored with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of the virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and the risk for further dissemination of virus. Long-distance migrating wild birds from southern Africa, e.g. the common tern (Sterna hirundo), may be included in targeted active surveillance schemes at a few priority locations in Europe in order to detect HPAI A(H5)-infected migrating birds early. However, the risk of HPAI introduction from non-EU countries via migratory wild birds to Europe is still considered to be much lower for wild birds crossing the southern borders than for those crossing the north-eastern borders.

8.
EFSA J ; 16(7): e05343, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32625979

RESUMEN

This guidance defines the process for handling applications on new or modified stunning methods and the parameters that will be assessed by the EFSA Animal Health and Welfare (AHAW) Panel. The applications, received through the European Commission, should contain administrative information, a checklist of data to be submitted and a technical dossier. The dossier should include two or more studies (in laboratory and slaughterhouse conditions) reporting all parameters and methodological aspects that are indicated in the guidance. The applications will first be scrutinised by the EFSA's Applications Desk (APDESK) Unit for verification of the completeness of the data submitted for the risk assessment of the stunning method. If the application is considered not valid, additional information may be requested from the applicant. If considered valid, it will be subjected to assessment phase 1 where the data related to parameters for the scientific evaluation of the stunning method will be examined by the AHAW Panel. Such parameters focus on the stunning method and the outcomes of interest, i.e. immediate onset of unconsciousness or the absence of avoidable pain, distress and suffering until the loss of consciousness and duration of the unconsciousness (until death). The applicant should also propose methodologies and results to assess the equivalence with existing stunning methods in terms of welfare outcomes. Applications passing assessment phase 1 will be subjected to the following phase 2 which will be carried out by the AHAW Panel and focuses on the animal welfare risk assessment. In this phase, the Panel will assess the outcomes, conclusions and discussion proposed by the applicant. The results of the assessment will be published in a scientific opinion.

9.
EFSA J ; 16(7): e05344, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32625980

RESUMEN

The European Commission requested EFSA to compare the reliability of wild boar density estimates across the EU and to provide guidance to improve data collection methods. Currently, the only EU-wide available data are hunting data. Their collection methods should be harmonised to be comparable and to improve predictive models for wild boar density. These models could be validated by more precise density data, collected at local level e.g. by camera trapping. Based on practical and theoretical considerations, it is currently not possible to establish wild boar density thresholds that do not allow sustaining African swine fever (ASF). There are many drivers determining if ASF can be sustained or not, including heterogeneous population structures and human-mediated spread and there are still unknowns on the importance of different transmission modes in the epidemiology. Based on extensive literature reviews and observations from affected Member States, the efficacy of different wild boar population reduction and separation methods is evaluated. Different wild boar management strategies at different stages of the epidemic are suggested. Preventive measures to reduce and stabilise wild boar density, before ASF introduction, will be beneficial both in reducing the probability of exposure of the population to ASF and the efforts needed for potential emergency actions (i.e. less carcass removal) if an ASF incursion were to occur. Passive surveillance is the most effective and efficient method of surveillance for early detection of ASF in free areas. Following focal ASF introduction, the wild boar populations should be kept undisturbed for a short period (e.g. hunting ban on all species, leave crops unharvested to provide food and shelter within the affected area) and drastic reduction of the wild boar population may be performed only ahead of the ASF advance front, in the free populations. Following the decline in the epidemic, as demonstrated through passive surveillance, active population management should be reconsidered.

10.
Sci Total Environ ; 587-588: 524-537, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28279532

RESUMEN

Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In conclusion, EFSA calls for collaborative action at the EU level to establish a common and open access database to serve multiple purposes and different stakeholders.


Asunto(s)
Abejas/fisiología , Contaminantes Ambientales/análisis , Plaguicidas/análisis , Estrés Fisiológico , Animales , Unión Europea , Medición de Riesgo
11.
EFSA J ; 15(10): e04991, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32625288

RESUMEN

Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.

12.
EFSA J ; 15(10): e04997, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32625294

RESUMEN

Infestation with Varroa spp. (varroosis) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of varroosis to be listed, Article 9 for the categorisation of varroosis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to varroosis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether varroosis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, the assessment on compliance of varroosis with the criteria as in Annex IV to the AHL, for the application of the disease prevention and control rules referred to in Article 9(1), and which animal species can be considered to be listed for varroosis according to Article 8(3) are also inconclusive.

13.
EFSA J ; 15(10): e05018, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32625308

RESUMEN

The A(H5N8) highly pathogenic avian influenza (HPAI) epidemic occurred in 29 European countries in 2016/2017 and has been the largest ever recorded in the EU in terms of number of poultry outbreaks, geographical extent and number of dead wild birds. Multiple primary incursions temporally related with all major poultry sectors affected but secondary spread was most commonly associated with domestic waterfowl species. A massive effort of all the affected EU Member States (MSs) allowed a descriptive epidemiological overview of the cases in poultry, captive birds and wild birds, providing also information on measures applied at the individual MS level. Data on poultry population structure are required to facilitate data and risk factor analysis, hence to strengthen science-based advice to risk managers. It is suggested to promote common understanding and application of definitions related to control activities and their reporting across MSs. Despite a large number of human exposures to infected poultry occurred during the ongoing outbreaks, no transmission to humans has been identified. Monitoring the avian influenza (AI) situation in other continents indicated a potential risk of long-distance spread of HPAI virus (HPAIV) A(H5N6) from Asia to wintering grounds towards Western Europe, similarly to what happened with HPAIV A(H5N8) and HPAIV A(H5N1) in previous years. Furthermore, the HPAI situation in Africa with A(H5N8) and A(H5N1) is rapidly evolving. Strengthening collaborations at National, EU and Global levels would allow close monitoring of the AI situation, ultimately helping to increase preparedness. No human case was reported in the EU due to AIVs subtypes A(H5N1), A(H5N6), A(H7N9) and A(H9N2). Direct transmission of these viruses to humans has only been reported in areas, mainly in Asia and Egypt, with a substantial involvement of wild bird and/or poultry populations. It is suggested to improve the collection and reporting of exposure events of people to AI.

14.
EFSA J ; 15(11): e05068, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32625356

RESUMEN

EFSA assisted four countries in the analysis of epidemiological data on African swine fever (ASF), collected until September 2017. The temporal analysis demonstrated that the average proportions of PCR and antibody-ELISA positive samples from the hunted wild boar remained below 3.9 and 6.6, respectively. A peak in the ASF incidence was observed 6 months after the first observed case, followed by a significant reduction of the number of cases and low levels of African swine fever virus (ASFV) circulation at the end of 38 months follow-up period at different spatial resolutions. The spatial analysis concluded that human-mediated spread of ASFV continues to play a critical role in the ASF epidemiology, despite all measures currently taken. 'Wild boar density', 'total road length' (as proxy for human activity) and 'average suitable wild boar habitat availability' were identified as predictors for the occurrence of ASF in Estonia by a Bayesian hierarchical model, whereas 'wild boar density' and 'density of pig farms' were predictors according to a generalised additive model. To evaluate the preventive strategies proposed in EFSA's Scientific Opinion (2015) to stop the spread of ASFV in the wild boar population, a simulation model, building on expert knowledge and literature was used. It was concluded that reduction of wild boar population and carcass removal to stop the spread of ASFV in the wild boar population are more effective when applied preventively in the infected area. Drastic depopulation, targeted hunting of female wild boar and carcass removal solely implemented as measures to control ASF in the wild boar population need to be implemented in a highly effective manner (at or beyond the limit of reported effectivity in wild boar management) to sustainably halt the spread of ASF.

15.
EFSA J ; 15(12): e05141, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32625395

RESUMEN

Between 1 September and 15 November 2017, 48 A(H5N8) highly pathogenic avian influenza (HPAI) outbreaks in poultry holdings and 9 H5 HPAI wild bird events were reported within Europe. A second epidemic HPAI A(H5N8) wave started in Italy on the third week of July and is still ongoing on 15 November 2017. The Italian epidemiological investigations indicated that sharing of vehicles, sharing of personnel and close proximity to infected holdings are the more likely sources of secondary spread in a densely populated poultry area. Despite the ongoing human exposures to infected poultry during the outbreaks, no transmission to humans has been identified in the EU. The report includes an update of the list of wild bird target species for passive surveillance activities that is based on reported AI-infected wild birds since 2006. The purpose of this list is to provide information on which bird species to focus in order to achieve the most effective testing of dead birds for detection of H5 HPAI viruses. Monitoring the avian influenza situation in other continents revealed the same risks as in the previous report (October 2016-August 2017): the recent human case of HPAI A(H5N6) in China underlines the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty on the geographical distribution of these viruses. Interactions between EFSA and member states have taken place to initiate discussions on improving the quality of data collections and to find a step-wise approach to exchange relevant (denominator) data without causing an additional resource burden.

16.
EFSA J ; 15(2): e04739, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32625419

RESUMEN

A new fungus, Batrachochytrium salamandrivorans (Bsal), was identified in wild populations of salamanders in the Netherlands and Belgium, and in kept salamander populations in Germany and the United Kingdom. EFSA assessed the potential of Bsal to affect the health of wild and kept salamanders in the EU, the effectiveness and feasibility of a movement ban of traded salamanders, the validity, reliability and robustness of available diagnostic methods for Bsal detection, and possible alternative methods and feasible risk mitigation measures to ensure safe international and EU trade of salamanders and their products. Bsal was isolated and characterised in 2013 from a declining fire salamander (Salamandra salamandra) population in the Netherlands. Based on the available evidence, it is likely that Bsal is a sufficient cause for the death of S. salamandra both in the laboratory and in the wild. Despite small sample sizes, the available experimental evidence indicates that Bsal is associated with disease and death in individuals of 12 European and 3 Asian salamander species, and with high mortality rate outbreaks in kept salamanders. Bsal experimental infection was detected in individuals of at least one species pertaining to the families Salamandridae, Plethodontidae, Hynobiidae and Sirenidae. Movement bans constitute key risk mitigation measures to prevent pathogen spread into naïve areas and populations. The effectiveness of a movement ban is mainly dependent on the import volumes, possibility of Bsal to remain viable outside susceptible/tolerant species, and the capacity to limit illegal movements. Duplex real-time PCR can be used to detect Bsal DNA, but has not been fully validated. Quarantining salamanders, enacting legislation that requires testing of animals to demonstrate freedom from Bsal, before movement can take place, restricting salamander movements, tracking all traded species, hygienic procedures/biosecurity measures before and during movements, and increasing public awareness are relevant measures for ensuring safe intra-EU and international trade of salamanders.

17.
EFSA J ; 15(7): e04889, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32625554

RESUMEN

The infection with Brucella abortus, Brucella melitensis and Brucella suis has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of the infection with B. abortus, B. melitensis and B. suis to be listed, Article 9 for the categorisation of the infection with B. abortus, B. melitensis and B. suis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to the infection with B. abortus, B. melitensis and B. suis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, the infection with B. abortus, B. melitensis and B. suis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease complies with the criteria as in Sections 2, 3, 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b), (c), (d) and (e) of Article 9(1). The animal species to be listed for the infection with B. abortus, B. melitensis and B. suis according to Article 8(3) criteria are several mammal species, as indicated in the present opinion.

18.
EFSA J ; 15(7): e04891, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32625556

RESUMEN

Low pathogenic avian influenza (LPAI) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of LPAI to be listed, Article 9 for the categorisation of LPAI according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to LPAI. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective levels. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, LPAI can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 3 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (c) and (e) of Article 9(1). The animal species to be listed for LPAI according to Article 8(3) criteria are all species of domestic poultry and wild species of mainly Anseriformes and Charadriiformes, as indicated in the present opinion.

19.
PLoS One ; 6(2): e16827, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21359217

RESUMEN

Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages.


Asunto(s)
Antígenos/metabolismo , Macrófagos Alveolares/metabolismo , Glicoproteínas de Membrana/fisiología , Receptores Inmunológicos/fisiología , Toxinas Biológicas/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endocitosis/fisiología , Inmunotoxinas/farmacología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Glicoproteínas de Membrana/metabolismo , Transporte de Proteínas/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Porcinos
20.
Vet Microbiol ; 147(3-4): 376-82, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20675082

RESUMEN

Escherichia coli (E. coli) O157:H7 can cause haemorrhagic colitis and the haemolytic uremic syndrome in humans. Ruminants are the main reservoir for this bacterium: they can harbour the bacteria in the gastrointestinal tract without showing clinical symptoms. The reason for this persistence is still unclear, although it has been suggested that E. coli O157:H7 can suppress the immune system. To investigate the effects on the immune system of ruminants, an infection model is needed that mimics a long-term infection as it can occur in both sheep and cattle. As the terminal rectum has recently been identified as a primary colonisation site in cattle, we developed a rectal inoculation model for sheep and used this model to study immune responses against selected virulence factors of E. coli O157:H7 (intimin, EspA and EspB). Sheep were infected and re-infected when E. coli O157:H7 excretion was no longer detectable. The animals did not develop serum or local antibody responses but showed a cellular response against EspA and intimin respectively 9 and 16 days after infection. This response was also present 5 days after re-infection, albeit lower, and did not prevent animals from being re-infected. These results demonstrate that E. coli O157:H7 can be persistently present in the large intestine of sheep without inducing a clear protective immune response.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/inmunología , Recto/inmunología , Enfermedades de las Ovejas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proliferación Celular , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Heces/microbiología , Contenido Digestivo/microbiología , Inmunidad Celular/inmunología , Linfocitos/citología , Recto/microbiología , Ovinos , Enfermedades de las Ovejas/microbiología , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...