Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37886519

RESUMEN

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.

2.
Nat Commun ; 14(1): 5893, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735495

RESUMEN

The SUMO protease SENP6 maintains genomic stability, but mechanistic understanding of this process remains limited. We find that SENP6 deconjugates SUMO2/3 polymers on a group of DNA damage response proteins, including BRCA1-BARD1, 53BP1, BLM and ERCC1-XPF. SENP6 maintains these proteins in a hypo-SUMOylated state under unstressed conditions and counteracts their polySUMOylation after hydroxyurea-induced stress. Co-depletion of RNF4 leads to a further increase in SUMOylation of BRCA1, BARD1 and BLM, suggesting that SENP6 antagonizes targeting of these proteins by RNF4. Functionally, depletion of SENP6 results in uncoordinated recruitment and persistence of SUMO2/3 at UVA laser and ionizing radiation induced DNA damage sites. Additionally, SUMO2/3 and DNA damage response proteins accumulate in nuclear bodies, in a PML-independent manner driven by multivalent SUMO-SIM interactions. These data illustrate coordinated regulation of SUMOylated DNA damage response proteins by SENP6, governing their timely localization at DNA damage sites and nuclear condensation state.


Asunto(s)
Proteasas de Cisteína , Péptido Hidrolasas , Daño del ADN , Endopeptidasas/genética , Hidroxiurea
3.
Gut ; 71(11): 2266-2283, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35074907

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has the characteristics of high-density desmoplastic stroma, a distinctive immunosuppressive microenvironment and is profoundly resistant to all forms of chemotherapy and immunotherapy, leading to a 5-year survival rate of 9%. Our study aims to add novel small molecule therapeutics for the treatment of PDAC. DESIGN: We have studied whether TAK-981, a novel highly selective and potent small molecule inhibitor of the small ubiquitin like modifier (SUMO) activating enzyme E1 could be used to treat a preclinical syngeneic PDAC mouse model and we have studied the mode of action of TAK-981. RESULTS: We found that SUMOylation, a reversible post-translational modification required for cell cycle progression, is increased in PDAC patient samples compared with normal pancreatic tissue. TAK-981 decreased SUMOylation in PDAC cells at the nanomolar range, thereby causing a G2/M cell cycle arrest, mitotic failure and chromosomal segregation defects. TAK-981 efficiently limited tumour burden in the KPC3 syngeneic mouse model without evidence of systemic toxicity. In vivo treatment with TAK-981 enhanced the proportions of activated CD8 T cells and natural killer (NK) cells but transiently decreased B cell numbers in tumour, peripheral blood, spleen and lymph nodes. Single cell RNA sequencing revealed activation of the interferon response on TAK-981 treatment in lymphocytes including T, B and NK cells. TAK-981 treatment of CD8 T cells ex vivo induced activation of STAT1 and interferon target genes. CONCLUSION: Our findings indicate that pharmacological inhibition of the SUMO pathway represents a potential strategy to target PDAC via a dual mechanism: inhibiting cancer cell cycle progression and activating anti-tumour immunity by inducing interferon signalling.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Ciclo Celular , Proliferación Celular , Interferones , Células Asesinas Naturales , Ratones , Neoplasias Pancreáticas/patología , Sumoilación , Microambiente Tumoral , Enzimas Activadoras de Ubiquitina , Ubiquitinas/metabolismo , Neoplasias Pancreáticas
4.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31722399

RESUMEN

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Transcripción Genética , Ubiquitina/genética , Línea Celular Transformada , Línea Celular Tumoral , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Rayos Ultravioleta
5.
Nat Commun ; 10(1): 3987, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31485003

RESUMEN

In contrast to our extensive knowledge on ubiquitin polymer signaling, we are severely limited in our understanding of poly-SUMO signaling. We set out to identify substrates conjugated to SUMO polymers, using knockdown of the poly-SUMO2/3 protease SENP6. We identify over 180 SENP6 regulated proteins that represent highly interconnected functional groups of proteins including the constitutive centromere-associated network (CCAN), the CENP-A loading factors Mis18BP1 and Mis18A and DNA damage response factors. Our results indicate a striking protein group de-modification by SENP6. SENP6 deficient cells are severely compromised for proliferation, accumulate in G2/M and frequently form micronuclei. Accumulation of CENP-T, CENP-W and CENP-A to centromeres is impaired in the absence of SENP6. Surprisingly, the increase of SUMO chains does not lead to ubiquitin-dependent proteasomal degradation of the CCAN subunits. Our results indicate that SUMO polymers can act in a proteolysis-independent manner and consequently, have a more diverse signaling function than previously expected.


Asunto(s)
Centrómero/metabolismo , Cisteína Endopeptidasas/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral , Proliferación Celular/genética , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cisteína Endopeptidasas/genética , Células HEK293 , Células HeLa , Humanos , Interferencia de ARN , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Nat Commun ; 8(1): 1809, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180619

RESUMEN

SUMO-targeted ubiquitin ligases (STUbLs) mediate the ubiquitylation of SUMOylated proteins to modulate their functions. In search of direct targets for the STUbL RNF4, we have developed TULIP (targets for ubiquitin ligases identified by proteomics) to covalently trap targets for ubiquitin E3 ligases. TULIP methodology could be widely employed to delineate E3 substrate wiring. Here we report that the single SUMO E2 Ubc9 and the SUMO E3 ligases PIAS1, PIAS2, PIAS3, ZNF451, and NSMCE2 are direct RNF4 targets. We confirm PIAS1 as a key RNF4 substrate. Furthermore, we establish the ubiquitin E3 ligase BARD1, a tumor suppressor and partner of BRCA1, as an indirect RNF4 target, regulated by PIAS1. Interestingly, accumulation of BARD1 at local sites of DNA damage increases upon knockdown of RNF4. Combined, we provide an insight into the role of the STUbL RNF4 to balance the role of SUMO signaling by directly targeting Ubc9 and SUMO E3 ligases.


Asunto(s)
Proteínas Nucleares/metabolismo , Sumoilación/fisiología , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Daño del ADN/fisiología , Reparación del ADN/fisiología , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
7.
Cell Rep ; 10(10): 1778-1791, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25772364

RESUMEN

Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4.

8.
Nat Struct Mol Biol ; 21(10): 927-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25218447

RESUMEN

SUMOylation is a reversible post-translational modification essential for genome stability. Using high-resolution MS, we have studied global SUMOylation in human cells in a site-specific manner, identifying a total of >4,300 SUMOylation sites in >1,600 proteins. To our knowledge, this is the first time that >1,000 SUMOylation sites have been identified under standard growth conditions. We quantitatively studied SUMOylation dynamics in response to SUMO protease inhibition, proteasome inhibition and heat shock. Many SUMOylated lysines have previously been reported to be ubiquitinated, acetylated or methylated, thus indicating cross-talk between SUMO and other post-translational modifications. We identified 70 phosphorylation and four acetylation events in proximity to SUMOylation sites, and we provide evidence for acetylation-dependent SUMOylation of endogenous histone H3. SUMOylation regulates target proteins involved in all nuclear processes including transcription, DNA repair, chromatin remodeling, precursor-mRNA splicing and ribosome assembly.


Asunto(s)
Histonas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Acetilación , Secuencia de Aminoácidos , Línea Celular Tumoral , Inestabilidad Genómica , Células HeLa , Humanos , Fosforilación , Inhibidores de Proteasoma/farmacología , Transducción de Señal/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores
9.
Mol Cell ; 53(6): 1053-66, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24582501

RESUMEN

Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M phase, when FoxM1 transcriptional activity is required. We found that a SUMOylation-deficient FoxM1 mutant was less active compared to wild-type FoxM1, implying that SUMOylation of the protein enhances its transcriptional activity. Mechanistically, SUMOylation blocks the dimerization of FoxM1, thereby relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression.


Asunto(s)
Ciclo Celular/genética , Segregación Cromosómica , Factores de Transcripción Forkhead/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Transcripción Genética , Secuencia de Aminoácidos , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Células HeLa , Humanos , Datos de Secuencia Molecular , Multimerización de Proteína , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
10.
Mech Ageing Dev ; 133(7): 498-507, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22721680

RESUMEN

Senescence is thought to play an important role in the progressive age-related decline in tissue integrity and concomitant diseases, but not much is known about the complex interplay between upstream regulators and downstream effectors. We profiled whole genome gene expression of non-stressed and rotenone-stressed human fibroblast strains from young and oldest old subjects, and measured senescence associated ß-gal activity. Microarray results identified gene sets involved in carbohydrate metabolism, Wnt/ß-catenin signaling, the cell cycle, glutamate signaling, RNA-processing and mitochondrial function as being differentially regulated with chronological age. The most significantly differentially regulated mRNA corresponded to the p16 gene. p16 was then investigated using qPCR, Western blotting and immunocytochemistry. In conclusion, we have identified cellular pathways that are differentially expressed between fibroblast strains from young and old subjects.


Asunto(s)
Envejecimiento/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Células Cultivadas , Femenino , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
Mol Cancer ; 10: 111, 2011 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-21910853

RESUMEN

BACKGROUND: In around 50% of all human cancers the tumor suppressor p53 is mutated. It is generally assumed that in the remaining tumors the wild-type p53 protein is functionally impaired. The two main inhibitors of p53, hMDM2 (MDM2) and hMDMX (MDMX/MDM4) are frequently overexpressed in wild-type p53 tumors. Whereas the main activity of hMDM2 is to degrade p53 protein, its close homolog hMDMX does not degrade p53, but it represses its transcriptional activity. Here we study the role of hMDMX in the neoplastic transformation of human fibroblasts and embryonic retinoblasts, since a high number of retinoblastomas contain elevated hMDMX levels. METHODS: We made use of an in vitro transformation model using a retroviral system of RNA interference and gene overexpression in primary human fibroblasts and embryonic retinoblasts. Consecutive knockdown of RB and p53, overexpression of SV40-small t, oncogenic HRasV12 and HA-hMDMX resulted in a number of stable cell lines representing different stages of the transformation process, enabling a comparison between loss of p53 and hMDMX overexpression. The cell lines were tested in various assays to assess their oncogenic potential. RESULTS: Both p53-knockdown and hMDMX overexpression accelerated proliferation and prevented growth suppression induced by introduction of oncogenic Ras, which was required for anchorage-independent growth and the ability to form tumors in vivo. Furthermore, we found that hMDMX overexpression represses basal p53 activity to some extent. Transformed fibroblasts with very high levels of hMDMX became largely resistant to the p53 reactivating drug Nutlin-3. The Nutlin-3 response of hMDMX transformed retinoblasts was intact and resembled that of retinoblastoma cell lines. CONCLUSIONS: Our studies show that hMDMX has the essential properties of an oncogene. Its constitutive expression contributes to the oncogenic phenotype of transformed human cells. Its main function appears to be p53 inactivation. Therefore, developing new drugs targeting hMDMX is a valid approach to obtain new treatments for a subset of human tumors expressing wild-type p53.


Asunto(s)
Transformación Celular Neoplásica/patología , Fibroblastos/patología , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/metabolismo , Retina/patología , Animales , Adhesión Celular , Proteínas de Ciclo Celular , Proliferación Celular , Forma de la Célula , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Embrión de Pollo , Membrana Corioalantoides/patología , Fibroblastos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Imidazoles/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Trasplante de Neoplasias , Oncogenes , Piperazinas/metabolismo , Cultivo Primario de Células , Retina/embriología , Retina/metabolismo , Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
12.
J Biol Chem ; 285(38): 29111-27, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20659896

RESUMEN

The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells, p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are up-regulated in response to various stresses, including DNA damage and oncogene activation. Active p53 initiates transcriptional and transcription-independent programs that result in cell cycle arrest, cellular senescence, or apoptosis. p53 also activates transcription of HDM2, which initially leads to the degradation of HDMX, creating a positive feedback loop to obtain maximal activation of p53. Subsequently, when stress-induced post-translational modifications start to decline, HDM2 becomes effective in targeting p53 for degradation, thus attenuating the p53 response. To date, no clear function for HDMX in this critical attenuation phase has been demonstrated experimentally. Like HDM2, the HDMX gene contains a promoter (P2) in its first intron that is potentially inducible by p53. We show that p53 activation in response to a plethora of p53-activating agents induces the transcription of a novel HDMX mRNA transcript from the HDMX-P2 promoter. This mRNA is more efficiently translated than that expressed from the constitutive HDMX-P1 promoter, and it encodes a long form of HDMX protein, HDMX-L. Importantly, we demonstrate that HDMX-L cooperates with HDM2 to promote the ubiquitination of p53 and that p53-induced HDMX transcription from the P2 promoter can play a key role in the attenuation phase of the p53 response, to effectively diminish p53 abundance as cells recover from stress.


Asunto(s)
Intrones/fisiología , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/fisiología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión/genética , Sitios de Unión/fisiología , Western Blotting , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Doxiciclina/farmacología , Etopósido/farmacología , Evolución Molecular , Humanos , Imidazoles/farmacología , Intrones/genética , Ratones , Proteínas Nucleares/metabolismo , Piperazinas/farmacología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA