Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734878

RESUMEN

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales , Ratones Noqueados , Neutrófilos , Animales , Neutrófilos/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Ratones , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Endogámicos C57BL , Trampas Extracelulares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/irrigación sanguínea
2.
Allergy ; 78(3): 714-730, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36181709

RESUMEN

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS: The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS: Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION: We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.


Asunto(s)
Asma , Inmunidad Innata , Ratones , Animales , Interleucina-33/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Linfocitos/metabolismo , Dinoprostona/metabolismo , Pulmón/metabolismo
3.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552840

RESUMEN

Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. Neutrophilic inflammation is tightly regulated to limit the amount of 'bystander injury' caused. Neutrophils were in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now recognised to also have important anti-inflammatory functions that are critical for the resolution of inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps). These are discussed together with features that may further promote the clearance of dead cells by efferocytosis and reprogramming of macrophages to promote resolution and repair.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Neutrófilos/metabolismo , Inflamación/metabolismo , Fagocitosis , Trampas Extracelulares/metabolismo , Antiinflamatorios
6.
Immunology ; 164(4): 689-700, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478165

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease without known cure that primarily affects synovial joints. RA has a prevalence of approximately 1% of the population worldwide. A vicious circle between two critical immune cell types, B cells and neutrophils, develops and promotes disease. Pathogenic anti-citrullinated protein antibodies (ACPA) directed against a range of citrullinated epitopes are abundant in both plasma and synovial fluid of RA patients. In addition to stimulating numerous cell types, ACPA and other autoantibodies, notably rheumatoid factor, form immune complexes (ICs) that potently activate neutrophils. Attracted to the synovium by abundant chemokines, neutrophils are locally stimulated by ICs. They generate cytokines and release cytotoxic compounds including neutrophil extracellular traps (NETs), strands of decondensed chromatin decorated with citrullinated histones and granule-derived neutrophil proteins, which are particularly abundant in the synovial fluid. In this way, neutrophils generate citrullinated epitopes and release peptidylarginine deiminase (PAD) enzymes capable of citrullinating extracellular proteins in the rheumatic joint, contributing to renewed ACPA generation. This review article focusses on the central function of citrullination, a post-translational modification of arginine residues in RA. The discussion includes ACPA and related autoantibodies, somatic hypermutation-mediated escape from negative selection by autoreactive B cells, promotion of the dominance of citrullinated antigens by genetic and lifestyle susceptibility factors and the vicious circle between ACPA-producing pathogenic B cells and NET-producing neutrophils in RA.


Asunto(s)
Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Comunicación Celular/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Artritis Reumatoide/patología , Autoantígenos/inmunología , Autoinmunidad , Linfocitos B/patología , Biomarcadores , Comunicación Celular/genética , Susceptibilidad a Enfermedades , Disbiosis , Trampas Extracelulares/genética , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Inmunidad , Inmunomodulación , Neutrófilos/patología , Factores de Riesgo
7.
Front Immunol ; 12: 671756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953730

RESUMEN

Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5' phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality in vitro and in neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Infiltración Neutrófila/inmunología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Cell Death Dis ; 12(4): 296, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741905

RESUMEN

Persistent neutrophilic inflammation drives host damage in autoimmune diseases that are characterized by abundant immune complexes. Insoluble immune complexes (iICs) potently activate pro-inflammatory neutrophil effector functions. We and others have shown that iICs also promote resolution of inflammation via stimulation of neutrophil apoptosis. We demonstrate here that iICs trigger FcγRIIa-dependent neutrophil macropinocytosis, leading to the rapid uptake, and subsequent degradation of iICs. We provide evidence that concurrent iIC-induced neutrophil apoptosis is distinct from phagocytosis-induced cell death. First, uptake of iICs occurs by FcγRII-stimulated macropinocytosis, rather than phagocytosis. Second, production of reactive oxygen species, but not iIC-internalization is a pre-requisite for iIC-induced neutrophil apoptosis. Our findings identify a previously unknown mechanism by which neutrophils can remove pro-inflammatory iICs from the circulation. Together iIC clearance and iIC-induced neutrophil apoptosis may act to prevent the potential escalation of neutrophilic inflammation in response to iICs.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Inflamación/inmunología , Neutrófilos/inmunología , Apoptosis , Humanos
9.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33579710

RESUMEN

The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor diminishes PGE2-dependent Treg inhibition. Together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T Reguladores , Dinoprostona/farmacología , Humanos , Inflamación , Subtipo EP2 de Receptores de Prostaglandina E
10.
Front Immunol ; 11: 598727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329593

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), in which T-cell migration into the CNS is key for pathogenesis. Patients with MS exhibit impaired regulatory T cell populations, and both Foxp3+ Tregs and type I regulatory T cells (Tr1) are dysfunctional. MS is a multifactorial disease and vitamin D deficiency is associated with disease. Herein, we examined the impact of 1,25(OH)2D3 on CD4+ T cells coactivated by either CD28 to induce polyclonal activation or by the complement regulator CD46 to promote Tr1 differentiation. Addition of 1,25(OH)2D3 led to a differential expression of adhesion molecules on CD28- and CD46-costimulated T cells isolated from both healthy donors or from patients with MS. 1,25(OH)2D3 favored Tr1 motility though a Vitamin D-CD46 crosstalk highlighted by increased VDR expression as well as increased CYP24A1 and miR-9 in CD46-costimulated T cells. Furthermore, analysis of CD46 expression on T cells from a cohort of patients with MS supplemented by vitamin D showed a negative correlation with the levels of circulating vitamin D. Moreover, t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis allowed the visualization and identification of clusters increased by vitamin D supplementation, but not by placebo, that exhibited similar adhesion phenotype to what was observed in vitro. Overall, our data show a crosstalk between vitamin D and CD46 that allows a preferential effect of Vitamin D on Tr1 cells, providing novel key insights into the role of an important modifiable environmental factor in MS.


Asunto(s)
Proteína Cofactora de Membrana/metabolismo , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vitamina D/metabolismo , Adulto , Biomarcadores , Quimiotaxis/efectos de los fármacos , Quimiotaxis/inmunología , Suplementos Dietéticos , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Esclerosis Múltiple/patología , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vitamina D/farmacología
11.
Nat Commun ; 11(1): 4027, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788676

RESUMEN

Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics.


Asunto(s)
Apoptosis , Imagenología Tridimensional , Péptidos Cíclicos/farmacología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Femenino , Humanos , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Fagocitosis/efectos de los fármacos , Fosfatidilserinas/metabolismo
12.
Immunity ; 52(4): 700-715.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294409

RESUMEN

The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) that collects peritoneal contaminants and provides a first layer of immunological defense within the abdomen. Here, we investigated the mechanisms that mediate the capture of peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of omental stromal cells revealed that the surface of FALCs were covered by CXCL1+ mesothelial cells, which we termed FALC cover cells. Blockade of CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during zymosan-induced peritonitis. Inhibition of protein arginine deiminase 4, an enzyme important for the release of neutrophil extracellular traps, abolished neutrophil aggregation and the capture of peritoneal contaminants by omental FALCs. Analysis of omental samples from patients with acute appendicitis confirmed neutrophil recruitment and bacterial capture at FALCs. Thus, specialized omental mesothelial cells coordinate the recruitment and aggregation of neutrophils to capture peritoneal contaminants.


Asunto(s)
Apendicitis/inmunología , Linfocitos/inmunología , Neutrófilos/inmunología , Epiplón/inmunología , Peritonitis/inmunología , Células del Estroma/inmunología , Enfermedad Aguda , Animales , Apendicitis/genética , Apendicitis/microbiología , Comunicación Celular/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Epitelio/inmunología , Epitelio/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Trampas Extracelulares/inmunología , Femenino , Expresión Génica , Humanos , Linfocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/microbiología , Epiplón/microbiología , Peritonitis/inducido químicamente , Peritonitis/genética , Peritonitis/microbiología , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/microbiología , Técnicas de Cultivo de Tejidos , Zimosan/administración & dosificación
13.
Essays Biochem ; 63(5): 607-618, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31420450

RESUMEN

Neutrophils are key players of the innate immune system, that are involved in coordinating the initiation, propagation and resolution of inflammation. Accurate neutrophil migration (chemotaxis) to sites of inflammation in response to gradients of chemoattractants is pivotal to these roles. Binding of chemoattractants to dedicated G-protein-coupled receptors (GPCRs) initiates downstream signalling events that promote neutrophil polarisation, a prerequisite for directional migration. We provide a brief summary of some of the recent insights into signalling events and feedback loops that serve to initiate and maintain neutrophil polarisation. This is followed by a discussion of recent developments in the understanding of in vivo neutrophil chemotaxis, a process that is frequently referred to as 'recruitment' or 'trafficking'. Here, we summarise neutrophil mobilisation from and homing to the bone marrow, and briefly discuss the role of glucosaminoglycan-immobilised chemoattractants and their corresponding receptors in the regulation of neutrophil extravasation and neutrophil swarming. We furthermore touch on some of the most recent insights into the roles of atypical chemokine receptors (ACKRs) in neutrophil recruitment, and discuss neutrophil reverse (transendothelial) migration together with potential function(s) in the dissemination and/or resolution of inflammation.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis de Leucocito/fisiología , Neutrófilos/metabolismo , Animales , Polaridad Celular/fisiología , Humanos , Inflamación/fisiopatología , Infiltración Neutrófila/fisiología , Transducción de Señal/fisiología
14.
J Immunol ; 203(6): 1579-1588, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31427445

RESUMEN

Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.


Asunto(s)
Inflamación/metabolismo , Integrinas/metabolismo , Neutrófilos/metabolismo , Animales , Células CHO , Adhesión Celular/fisiología , Línea Celular , Cricetulus , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Infiltración Neutrófila/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
15.
Small GTPases ; 10(3): 187-195, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-28328290

RESUMEN

Neutrophils are short-lived, abundant peripheral blood leukocytes that provide a first line of defense against bacterial and fungal infections while also being a key part of the inflammatory response. Chemokines induce neutrophil recruitment to inflammatory sites, where neutrophils perform several diverse functions that are aimed at fighting infections. Neutrophil effector functions are tightly regulated processes that are governed by an array of intracellular signaling pathways and initiated by receptor-ligand binding events. Dysregulated neutrophil activation can result in excessive inflammation and host damage, as is evident in several autoimmune diseases. Rho family small GTPases and agonist-activated phosphoinositide 3-kinases (PI3Ks) represent 2 classes of key regulators of the highly specialized neutrophil. Here we review cross-talk between these important signaling intermediates in the context of neutrophil functions. We include PI3K-dependent activation of Rho family small GTPases and of their guanine nucleotide exchange factors and GTPase activating proteins, as well as Rho GTPase-dependent regulation of PI3K.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Neutrófilos/enzimología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos
16.
J Leukoc Biol ; 105(1): 93-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30211955

RESUMEN

Neutrophils are short-lived, terminally differentiated leukocytes that form an essential part of host immunity and play a key role in acute and chronic inflammation. The analysis of these important cells is hindered by the fact that neutrophils are not amenable to culture, transfection, or transduction. Conditionally HoxB8-immortalized mouse hematopoietic progenitors are suitable for in vitro differentiation of a range of myeloid cells, including neutrophils. Integrins and FcγRs are cell surface receptors, the ligation of which is required for a range of neutrophil functions that are important in health and disease. We show here that HoxB8 neutrophils express major neutrophil integrins and FcγRs. They respond to FcγR and integrin stimulation in a manner that is comparable with primary neutrophils, in terms of intracellular signaling. HoxB8 neutrophils also perform a range of FcγR/integrin-dependent neutrophil functions, including, generation of reactive oxygen species, degranulation, and chemotaxis. Our findings suggest that HoxB8 neutrophils represent a faithful experimental model system for the analysis of Fc and integrin receptor-dependent neutrophil functions.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Integrinas/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Transducción de Señal , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Degranulación de la Célula , Quimiotaxis , Ratones Endogámicos C57BL , Neutrófilos/citología , Neutrófilos/fisiología , Especies Reactivas de Oxígeno/metabolismo
17.
Eur J Clin Invest ; 48 Suppl 2: e12948, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29734519

RESUMEN

Neutrophils are amongst the first cells to be recruited to sites of infection or trauma. Neutrophil functional responsiveness is tightly regulated by many agents including immune complexes. These immune cells can generate reactive oxygen species and degranulate to release abundant cytotoxic products, making them efficient at killing invading microorganisms. If neutrophil function is dysregulated, however, these cells have the potential to cause unwanted host tissue damage as exemplified by pathological and chronic inflammatory conditions. In physiological inflammation, once the initial insult has efficiently been dealt with, neutrophils are thought to leave the tissues or undergo programmed cells death, especially apoptosis. Apoptotic neutrophils are then rapidly removed by other phagocytes, primarily macrophages, by mechanisms that do not elicit a pro-inflammatory response. In this review, we discuss the interesting observations and consequences that immune complexes have on neutrophil cell death processes such as apoptosis.


Asunto(s)
Muerte Celular/fisiología , Neutrófilos/fisiología , Complejo Antígeno-Anticuerpo/fisiología , Apoptosis/fisiología , Muerte Celular/inmunología , Humanos , Inmunoglobulinas/fisiología , Neutrófilos/inmunología , Transducción de Señal/fisiología
18.
Biochem Soc Trans ; 46(3): 649-658, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29743277

RESUMEN

Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.


Asunto(s)
Comunicación Celular , Endotelio/patología , Inflamación/patología , Leucocitos/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Endotelio/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Integrinas/metabolismo , Leucocitos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología
19.
J Allergy Clin Immunol ; 142(6): 1884-1893.e6, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29428392

RESUMEN

BACKGROUND: Eosinophils play a central role in propagation of allergic diseases, including asthma. Both recruitment and retention of eosinophils regulate pulmonary eosinophilia, but the question of whether alterations in apoptotic cell clearance by phagocytes contributes directly to resolution of allergic airway inflammation remains unexplored. OBJECTIVES: In this study we investigated the role of the receptor tyrosine kinase Mer in mediating apoptotic eosinophil clearance and allergic airway inflammation resolution in vivo to establish whether apoptotic cell clearance directly affects the resolution of allergic airway inflammation. METHODS: Alveolar and bone marrow macrophages were used to study Mer-mediated phagocytosis of apoptotic eosinophils. Allergic airway inflammation resolution was modeled in mice by using ovalbumin. Fluorescently labeled apoptotic cells were administered intratracheally or eosinophil apoptosis was driven by administration of dexamethasone to determine apoptotic cell clearance in vivo. RESULTS: Inhibition or absence of Mer impaired phagocytosis of apoptotic human and mouse eosinophils by macrophages. Mer-deficient mice showed delayed resolution of ovalbumin-induced allergic airway inflammation, together with increased airway responsiveness to aerosolized methacholine, increased bronchoalveolar lavage fluid protein levels, altered cytokine production, and an excess of uncleared dying eosinophils after dexamethasone treatment. Alveolar macrophage phagocytosis was significantly Mer dependent, with the absence of Mer attenuating apoptotic cell clearance in vivo to enhance inflammation in response to apoptotic cells. CONCLUSIONS: We demonstrate that Mer-mediated apoptotic cell clearance by phagocytes contributes to resolution of allergic airway inflammation, suggesting that augmenting apoptotic cell clearance is a potential therapeutic strategy for treating allergic airway inflammation.


Asunto(s)
Apoptosis/inmunología , Eosinófilos/inmunología , Macrófagos/inmunología , Hipersensibilidad Respiratoria/inmunología , Tirosina Quinasa c-Mer/inmunología , Alérgenos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Femenino , Humanos , Inflamación/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Fagocitosis , Tirosina Quinasa c-Mer/genética
20.
Sci Signal ; 10(502)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066539

RESUMEN

A lack of regulatory T cell function is a critical factor in the pathogenesis of autoimmune diseases, such as multiple sclerosis (MS). Ligation of the complement regulatory protein CD46 facilitates the differentiation of T helper 1 (TH1) effector cells into interleukin-10 (IL-10)-secreting type 1 regulatory T cells (Tr1 cells), and this pathway is defective in MS patients. Cleavage of the ectodomain of CD46, which contains three N-glycosylation sites and multiple O-glycosylation sites, enables CD46 to activate T cells. We found that stimulation of the T cell receptor (TCR)-CD3 complex was associated with a reduction in the apparent molecular mass of CD46 in a manner that depended on O-glycosylation. CD3-stimulated changes in CD46 O-glycosylation status reduced CD46 processing and subsequent T cell signaling. During T cell activation, CD46 was recruited to the immune synapse in a manner that required its serine-, threonine-, and proline-rich (STP) region, which is rich in O-glycosylation sites. Recruitment of CD46 to the immune synapse switched T cells from producing the inflammatory cytokine interferon-γ (IFN-γ) to producing IL-10. Furthermore, CD4+ T cells isolated from MS patients did not exhibit a CD3-stimulated reduction in the mass of CD46 and thus showed increased amounts of cell surface CD46. Together, these data suggest a possible mechanism underlying the regulatory function of CD46 on T cells. Our findings may explain why this pathway is defective in patients with MS and provide insights into MS pathogenesis that could help to design future immunotherapies.


Asunto(s)
Activación de Linfocitos , Proteína Cofactora de Membrana/metabolismo , Esclerosis Múltiple/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Adulto , Complejo CD3/metabolismo , Femenino , Glicosilación , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Masculino , Proteína Cofactora de Membrana/genética , Persona de Mediana Edad , Plásmidos/genética , Células TH1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...