Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109774, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711443

RESUMEN

Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.

2.
Nutrients ; 13(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34444911

RESUMEN

Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Ácidos Linolénicos/farmacología , Carcinoma/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Células HCT116 , Humanos , Neoplasias Hipofaríngeas/tratamiento farmacológico , Neoplasias Hipofaríngeas/metabolismo , Peroxidación de Lípido/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...