RESUMEN
By-product-based diets have the potential to improve the environmental and economic sustainability of Tenebrio molitor (Linnaeus, 1758) production. However, evaluations of the efficacy of new diets are generally focused on larval performance, while the effect on adults is poorly understood. This aim of this study was to evaluate diets enriched with tomato pomace over a complete breeding cycle. The results showed that when used as an oviposition substrate, all the tested diets, including tomato pomace (T), outperformed the control bran-yeast diet (WY, 95:5 ratio), possibly due to the presence of cholesterol and linoleic acid. The adults fed with the bran-tomato pomace-brewer's spent grain diet (WTB, 50:27:23 ratio), the bran-tomato pomace-yeast diet (WTY, 50:41:9 ratio), and the bran-tomato pomace diet (WT, 50:50 ratio) produced significantly more larvae than those fed with the WY diet. The WTB diet (despite being yeast-free) performed similarly to the WY control diet during the subsequent larval growth phase, making it suitable for the entire production cycle. In conclusion, the results show that tomato pomace can be used a valid by-product in the formulation of efficient diets for the breeding of T. molitor and also provide an alternative to expensive yeast.
RESUMEN
The leafhopper genus Arboridia includes several species that feed on Vitis vinifera and cause leaf chlorosis. We report the first alien Arboridia infestation in Italy in 2021 in an Apulian vineyard. To confirm the taxonomic status of the species responsible for crop damage, and reconstruct its demographic history, we barcoded individuals from Apulia together with Arboridia spp. from Crete (Greece), A. adanae from Central Turkey and other specimens of the presumed sister species, A. dalmatina from Dalmatia (Croatia). Molecular phylogenies and barcoding gap analysis identified clades not associated with sampling locations. This result is incongruent with classical specimen assignment and is further supported by morphological analyses, which did not reveal significant differences among the populations. Therefore, we propose A. dalmatina as a junior synonym of A. adanae, which would become the only grapevine-related Arboridia species in the eastern Mediterranean. To further characterise A. adanae evolution, we performed a molecular clock analysis that suggested a radiation during the Pleistocene glaciations. Finally, to assess whether the Apulian individuals carried microorganisms of agricultural relevance, we sequenced their bacterial microbiota using 16S rRNA amplicon sequencing identifying three phytopathogens not generally associated with Arboridia activities as well as Wolbachia in one Apulian haplogroup. We discuss the agricultural implications of this infestation.
Asunto(s)
Hemípteros , Especies Introducidas , Humanos , Animales , ARN Ribosómico 16S/genética , Filogenia , GreciaRESUMEN
Substrate-borne vibrational communication is common in pentatomids. Although several works exist on the vibrational communication of Halyomorpha halys, its vibrational behavior post diapause has not been investigated. In this study, we recorded H. halys overwintered adults using laser doppler vibrometers at three temperatures: 10 °C (inactivity), 18 °C (breaking of diapause), and 25 °C (peak of mating activity). The aim was to assess the effect of temperature on the signaling, motility, and survival of H. halys. The insects were sexed into different cages and recorded separately or joined with a cage of the opposite sex. We calculated the total time spent on signaling and walking per replica. The males predominantly emitted male signal 1 (MS1) throughout the four months of recordings. The females exclusively emitted female signal 2 (FS2) when joined with the opposite sex cage the first two months of recordings. Interestingly, they also started FS2 signaling when recorded separately, after two months. No signaling was recorded at 10 °C. At 25 °C, the signaling latency time before vibrational signaling was 24 h compared to 23 days at 18 °C. The short latency time at 25 °C correlated with a higher death rate in early stages of recording. Male walking activity was significantly higher in joined cages at 18 °C and 25 °C, suggesting the increased searching behavior near the opposite sex. Overwintered H. halys could adapt to different conditions whereas low temperatures maintain the diapause which is characterized by no signaling activity. Our results provide a foundation for bioclimatic modeling of climate change effects on H. halys and insights into the use of vibrational playbacks for mass trapping and monitoring as control techniques.
Asunto(s)
Diapausa , Heterópteros , Animales , Femenino , Masculino , Temperatura , Frío , ReproducciónRESUMEN
Tomato pomace (TP), an agricultural industrial waste product from the tomato processing industry, is valorized as a rearing substrate for Tenebrio molitor (L.). This study evaluated bran-based diets with increasing tomato pomace (0%, 27%, 41%, and 100%). Protein sources, such as brewer's spent grain and yeast, were used in TP27 and TP41 diets to ensure equal protein contents to the control diet. Results showed no different for larval and pupal weights between diets; however, the time of development significantly increases in TP100 compared to all diets. The feed conversion rate progressively increases from 2.7 to 4.3, respectively, from the control to the TP100 diet. Conversely, lycopene and ß-carotene increase in the larvae. The fatty acid composition improves by increasing polyunsaturated fatty acids (mainly α-linoleic acid). Although the best nutritional quality was obtained in T100, the TP41 is the optimal diet for balance between larval performance and qualitative improvement of larvae. Therefore, tomato pomace is suitable for the formulation of mealworm diets, even in high dosages, when supplemented with sustainable protein and carbohydrate sources.
RESUMEN
Environmental conditions are crucial factors that influence communication systems and affect animal behavior. Research in the field of biotremology has improved our understanding of insect behavior, ecology, and evolution. However, the interactions between vibrational signaling and environmental factors are less studied, mainly because of technical issues faced in field trials. We therefore developed and tested an approach to investigate the effect of abiotic factors on insect vibrational signaling and explored its implementation as a monitoring tool for insect vibrational signals, using a vineyard as an agroecosystem model. Our results showed a significant decrease in insect signaling activity during unsuitable conditions of high temperature and wind velocity. We determined for the first time, the daily signaling pattern of the two insect pests, Scaphoideus titanus and Halyomorpha halys, in natural conditions. Biotremology techniques could be profitably used to monitor not only the presence of target pest species but also the biodiversity associated with vibrational signaling insects. In particular, the method implemented in this study could be used as a tool to compare the quality of cultivated areas under different management systems.
Asunto(s)
Heterópteros , Insectos , Animales , Conducta Animal , Ecología , VibraciónRESUMEN
BACKGROUND: Vibrational stimuli can support pest management as they provide environmentally friendly methods to manipulate insect pest behaviors. Different vibrational stimuli were used to study and influence the behavior of the meadow spittlebug, Philaenus spumarius, the European vector of Xylella fastidiosa. In playback experiments, we tested the reactions of the spittlebug toward the male calling signals (test 1) and the male-male signal (test 2). In test 3, we evaluated the use of conspecific signals and noises to repel insects/disrupt mating. RESULTS: Test 1 provided new insights regarding the role of the male calling signal in intraspecific communication, in particular that this signal likely does not underlie aggregation or aggression toward conspecifics. Test 2 demonstrated that the male-male signal is used by males to express distress when physically interacting, whilst, when played back into a host plant, it has not any repellent effect on the spittlebug. Test 3A suggested that males exploit short silence gaps to localize the signaling partner, while test 3B showed that a continuous noise with a specific frequency range successfully disrupt mating, as only one male out of 20 localized the female on the plant. CONCLUSION: Playbacks obtained from prerecorded P. spumarius' signals were successfully used to accomplish ethological studies; even so, this approach did not show a real potential to be used as a control strategy. However, noises designed to mask the spittlebug signals significantly disrupted species mating and could integrate other techniques aimed at reducing the spread of X. fastidiosa after appropriate implementation. © 2022 Society of Chemical Industry.
Asunto(s)
Hemípteros , Repelentes de Insectos , Animales , Insectos Vectores , MasculinoRESUMEN
Trissolcus mitsukurii and Trissolcus japonicus are two Asian egg parasitoids associated with different pentatomids such as Halyomorpha halys. Adventive populations of T. mitsukurii were found in Northern Italy, suggesting its employment as a biological control agent (BCA) against H. halys. Nevertheless, to reduce the latter's population, T. japonicus was released in Italy. Releasing an exotic parasitoid requires investigating the interaction between the BCA and the environment to avoid negative impacts on the entomofauna of the new habitat. Trissolcus mitsukurii is mainly associated with Nezara viridula in its native area. Therefore, we investigated and compared the ability of female T. mitsukurii and T. japonicus to distinguish between naturally released cues of H. halys and N. viridula. A single parasitoid was exposed to contact kairomones of both pests to evaluate its modifications in orthokinetic and locomotory behaviour. The behaviour of female T. mitsukurii was also tested on synthetic compounds simulating the cues of the two pentatomids. When naturally released cues were used, T. japonicus preferred the traces of H. halys, while T. mitsukurii preferred N. viridula's cues. Moreover, the attraction of T. mitsukurii to N. viridula's cues was confirmed with synthetic cues. Additional studies are needed to judge if this parasitoid can be used as a BCA.
RESUMEN
The optimal harvesting of table grapes is commonly determined based on technological and phenolic indices analyzed over the course of its maturity. The classical techniques used for these analyses are destructive, time-consuming, and work for a limited number of samples that may not represent the heterogeneity of the vineyard. This study aimed to follow the ripening season of table grapes using non-destructive tools as a rapid and accurate alternative for destructive techniques. Grape samples were collected from a Sugranineteen vineyard during the ripening season to measure the basic maturity indices via wet chemistry, and total polyphenols, anthocyanins, and flavonoids were evaluated by spectrophotometry. Fluorescent readings were collected from intact clusters with a portable optical sensor (Multiplex® 3, Force-A, France) that generates indices correlated to different maturity parameters. Results revealed strong relationships between the Multiplex® indices ANTH_RG and FERARI and the skin anthocyanin content, with R2 values equal to 0.9613 and 0.8713, respectively. The NBI_R index was also related to total anthocyanins (R2 = 0.8032), while the SFR_R index was linked to the titratable acidity (R2 = 0.6186), the sugar content (R2 = 0.7954), and to the color index of red grapes (CIRG) (R2 = 0.7835). Results demonstrated that Multiplex® 3 can be applied on intact clusters as an effective non-destructive tool for a rapid estimation of table grapes' anthocyanin content.
RESUMEN
Efficient strategies are required in sweet cherry fruits to control the spotted wing drosophila (SWD), Drosophila suzukii, due to its adverse economic effect on farmers. Cold storage (CS) and storage with elevated carbon dioxide (CO2) are environmentally safe approaches for the pest control of stored fresh fruit. These strategies are effective in controlling a wide variety of insect species, without allowing toxic compounds to accumulate. The purpose of this study was to assess the effectiveness of a post-harvest application of CO2 treatment at 50%, cold treatment at 4 °C (CT), and a combination of both (CO2-CT) in controlling the early stages of SWD within four cultivars of freshly harvested cherry fruit, namely "Burlat-Bigarreau", "Giorgia", "Ferrovia", and "Lapins". In addition, an evaluation of the quality attributes of the cherries (skin firmness, berry firmness, strong soluble material, and titratable acidity) was carried out at harvest and after 10 and 20 days of storage. All treatments significantly reduced the rate of emergence of SWD when compared to the control (untreated cherry at 24 °C), and 100% SWD mortality was obtained in Burlat-Bigarreau (CO2-CT). In addition, over the entire storage time, the quality parameters were preserved in the samples stored at 4 °C and in the samples with combined treatments in comparison with the control.
RESUMEN
Insects that communicate by vibrational signals live in a complex interactive network of communication. Most studies on insect intrasexual behavior, based on plant-borne vibrational signals, have targeted few individuals. Despite their importance, behaviors that occur within groups were often overlooked. The study of multiple individuals, when insects occur in high density could simulate the environment in which they live and provide more reliable information on their behavior. In semi-field conditions, we investigated the intrasexual behavior of the meadow spittlebug, Philaenus spumarius. Vibrational signals exchanged among individuals of the same sex were recorded throughout their adult stage, from late spring to early autumn, and during the day, from the morning to the evening using a laser vibrometer. Males were less active than females throughout the season and their interactions were less frequent compared to females. Intrasexual interactions were characterized by signal overlapping in both unisex groups, in addition to signal alternating only in the case of males. In conclusion, the study of signaling behavior in intrasexual groups contributed to a better understanding of P. spumarius social behavior. We discuss the hypothesis of a possible competitive behavior between males and cooperative behavior between females.
RESUMEN
The Orange Spiny Whitefly (OSW) Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) represents a new serious threat to Citrus spp., grapevine and ornamental plants in the whole Mediterranean area. Such threat urgently calls for the development of a sustainable control strategy, including insecticides compatible with biological control, and applicable also in organic citrus farming that represent an essential part of Mediterranean agricultural economy. Therefore, we evaluated the toxicity and the effects on host searching, oviposition, and probing and feeding behavior exerted on OSW by organic insecticides supposed to have limited side effects on environment and ecosystem services, i.e. sweet orange essential oil (EO), extract of Clitoria ternatea (CT), mineral oil, pyrethrin and azadirachtin. Despite none of the compounds caused a significant mortality of any of the OSW instars, we observed interesting effects on whitefly behavior: (i) EO and pyrethrin showed a relevant repellent effect, with impairment of both adults landing and oviposition on treated plants; (ii) CT and pyrethrin strongly affected probing behavior. Here, in the light of our findings, we discuss possible OSW sustainable control strategies and further research perspectives.
Asunto(s)
Hemípteros/fisiología , Insecticidas/farmacología , Aceite Mineral/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Citrus sinensis/química , Clitoria/química , Conducta Alimentaria/efectos de los fármacos , Femenino , Hemípteros/efectos de los fármacos , Control de Insectos , Limoninas/farmacología , Masculino , Región Mediterránea , Oviposición/efectos de los fármacos , Piretrinas/farmacologíaRESUMEN
The olive fruit fly, Bactrocera oleae, is considered the main olive pest worldwide, and has been the target of biological control programmes through the release of the braconid parasitoid Psyttalia concolor. Laboratory tests were performed to evaluate the influence of distance from the host on parasitisation, placing larvae of the substitute host Ceratitis capitata at seven distances (0, 0.5, 1, 1.5, 2, 2.5, 3 mm) and four different time periods (7, 15, 30, 60 min). Moreover, field collected olives of Ogliarola Barese cultivar infested by B. oleae were exposed to P. concolor females to confirm its ability to parasitise B. oleae in small olives. Psyttalia concolor oviposition was inhibited at 2.5 and 3 mm due to the ovipositor length of the parasitoid females (2.7 mm). Hosts were easily parasitised at distances between 0 and 1.5 mm. The thin fruit pulp (up to 3.5 mm) of field collected olives allowed the parasitisation to occur also in mature fruits. At the best combination distance/time (0 mm, 30 min), tests performed with different larvae/parasitoid female ratio showed an increasing emergence of P. concolor (from 20% to 57%) with larvae/parasitoid ratio increasing from 0.11 to 0.74. The results of the present study might optimise the mass rearing of P. concolor, through a proper setting of its parameters, such as the host/parasitoid ratio, exposure distances, and interaction time.