Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 541(1-2): 108-116, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29409747

RESUMEN

It was the aim of this study to elucidate the impact of the injection mold temperature upon the polymer crystallinity, its microstructure and the resulting drug release from immediate and sustained release tablets containing semi-crystalline polymers. The immediate release formulation contained 20% (w/w) ketoprofen (KETO) in poly (ethylene oxide) (PEO) and the sustained release formulation contained 20-40% (w/w) metoprolol tartrate (MPT) in polycaprolactone (PCL). Physical mixtures of drug-polymer were characterized via isothermal crystallization experiments using DSC and rheological measurements to elucidate the impact of the drug solid-state upon the crystallization kinetics. Tablets were prepared using various thermal histories (extrusion barrel temperature and injection mold temperatures). Polymer crystallinity and microstructure in the tablets was characterized via DSC and polarized optical microscopy. The polymer microstructure was altered by the various applied thermal histories. The differences in PEO crystallinity induced by the various mold temperatures did not affect the KETO dissolution from the tablets. On the other hand, MPT (20-40% w/w) dissolution from the PCL matrix when extruded at 80 °C and injection molded at 25 and 35 °C was significantly different due to the changes in the polymer microstructure. More perfect polymer crystals are obtained with higher mold temperatures, decreasing the drug diffusion rate through the PCL matrix. The results presented in this study imply that the injection mold temperature should be carefully controlled for sustained release formulations containing hydrophobic semi-crystalline polymers.


Asunto(s)
Preparaciones de Acción Retardada/farmacocinética , Composición de Medicamentos/métodos , Polímeros/química , Química Farmacéutica , Cristalización , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Excipientes/química , Interacciones Hidrofóbicas e Hidrofílicas , Cetoprofeno/administración & dosificación , Cetoprofeno/farmacocinética , Metoprolol/administración & dosificación , Metoprolol/farmacocinética , Modelos Químicos , Solubilidad , Comprimidos , Temperatura
2.
PLoS One ; 12(3): e0172723, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28248999

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D) organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.


Asunto(s)
Biopelículas/efectos de los fármacos , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia cenocepacia/fisiología , Econazol/farmacología , Miconazol/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Tobramicina/farmacología , Células A549 , Animales , Biopelículas/crecimiento & desarrollo , Infecciones por Burkholderia/metabolismo , Infecciones por Burkholderia/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada/métodos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/patología
3.
Proc Natl Acad Sci U S A ; 113(29): 8098-103, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382168

RESUMEN

Agonists of Toll-like receptors (TLRs) are potent activators of the innate immune system and hold promise as vaccine adjuvant and for anticancer immunotherapy. Unfortunately, in soluble form they readily enter systemic circulation and cause systemic inflammatory toxicity. Here we demonstrate that by covalent ligation of a small-molecule imidazoquinoline-based TLR7/8 agonist to 50-nm-sized degradable polymeric nanogels the potency of the agonist to activate TLR7/8 in in vitro cultured dendritic cells is largely retained. Importantly, imidazoquinoline-ligated nanogels focused the in vivo immune activation on the draining lymph nodes while dramatically reducing systemic inflammation. Mechanistic studies revealed a prevalent passive diffusion of the nanogels to the draining lymph node. Moreover, immunization studies in mice have shown that relative to soluble TLR7/8 agonist, imidazoquinoline-ligated nanogels induce superior antibody and T-cell responses against a tuberculosis antigen. This approach opens possibilities to enhance the therapeutic benefit of small-molecule TLR agonist for a variety of applications.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Imidazoles/administración & dosificación , Nanoestructuras/administración & dosificación , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos Bacterianos/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Geles , Concentración de Iones de Hidrógeno , Imidazoles/química , Imidazoles/farmacología , Inmunización , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos C57BL , Nanoestructuras/química , Linfocitos T/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...