Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 4(5): 681-693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609524

RESUMEN

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.


Asunto(s)
Envejecimiento , Ejercicio Físico , Músculo Esquelético , Humanos , Animales , Envejecimiento/metabolismo , Femenino , Ratones , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Masculino , Lipidómica , Lisofosfolípidos/metabolismo , Condicionamiento Físico Animal/fisiología , Anciano , Metabolismo de los Lípidos/fisiología , Monoglicéridos/metabolismo , Adulto , Persona de Mediana Edad
2.
Artículo en Inglés | MEDLINE | ID: mdl-38181883

RESUMEN

AIM: Sjögren-Larsson syndrome (SLS) is a rare neurometabolic disorder that mainly affects brain, eye and skin and is caused by deficiency of fatty aldehyde dehydrogenase. Our recent finding of a profoundly disturbed brain tissue lipidome in SLS prompted us to search for similar biomarkers in plasma as no functional test in blood is available for SLS. METHODS AND RESULTS: We performed plasma lipidomics and used a newly developed bioinformatics tool to mine the untargeted part of the SLS plasma and brain lipidome to search for SLS biomarkers. Plasma lipidomics showed disturbed ether lipid metabolism in known lipid classes. Untargeted lipidomics of both plasma and brain (white and grey matter) uncovered two new endogenous lipid classes highly elevated in SLS. The first biomarker group were alkylphosphocholines/ethanolamines containing different lengths of alkyl-chains where some alkylphosphocholines were > 600-fold elevated in SLS plasma. The second group of biomarkers were a set of 5 features of unknown structure. Fragmentation studies suggested that they contain ubiquinol and phosphocholine and one feature was also found as a glucuronide conjugate in plasma. The plasma features were highly distinctive for SLS with levels >100-1000-fold the level in controls, if present at all. We speculate on the origin of the alkylphosphocholines/ethanolamines and the nature of the ubiquinol-containing metabolites. CONCLUSIONS: The metabolites identified in this study represent novel endogenous lipid classes thus far unknown in humans. They represent the first plasma metabolite SLS-biomarkers and may also yield more insight into SLS pathophysiology.


Asunto(s)
Síndrome de Sjögren-Larsson , Humanos , Síndrome de Sjögren-Larsson/diagnóstico , Síndrome de Sjögren-Larsson/metabolismo , Lipidómica , Piel/metabolismo , Etanolaminas , Lípidos
3.
J Inherit Metab Dis ; 45(1): 29-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382226

RESUMEN

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, and neutropenia, caused by deleterious variants in TAFAZZIN. This gene encodes a phospholipid-lysophospholipid transacylase that is required for the remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, individuals with Barth syndrome have a deficiency of mature CL and accumulation of the remodeling intermediate monolysocardiolipin (MLCL). Diagnosis typically relies on mass spectrometric measurement of CL and MLCL in cells or tissues, and we previously described a method in blood spot that uses a specific MLCL/CL ratio as diagnostic biomarker. Here, we describe the evolution of our blood spot assay that is based on the implementation of reversed phase-UHPLC separation followed by full scan high resolution mass spectrometry. In addition to the MLCL/CL ratio, our improved method also generates a complete CL spectrum allowing the interrogation of the CL fatty acid composition, which considerably enhances the diagnostic reliability. This addition negates the need for a confirmatory test in lymphocytes thereby providing a shorter turn-around-time while achieving a more certain test result. As one of the few laboratories that offer this assay, we also evaluated the diagnostic yield and performance from 2006 to 2021 encompassing the use of both the original and improved assay. In this period, we performed 796 diagnostic analyses of which 117 (15%) were characteristic of Barth syndrome. In total, we diagnosed 93 unique individuals with Barth syndrome, including three females, which together amounts to about 40% of all reported individuals with Barth syndrome in the world.


Asunto(s)
Síndrome de Barth/diagnóstico , Cardiolipinas/sangre , Linfocitos/metabolismo , Lisofosfolípidos/sangre , Adolescente , Adulto , Síndrome de Barth/sangre , Niño , Preescolar , Femenino , Humanos , Modelos Lineales , Linfocitos/química , Masculino , Espectrometría de Masas , Reproducibilidad de los Resultados , Adulto Joven
4.
Dis Model Mech ; 14(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653825

RESUMEN

Comprehensive metabolomic and lipidomic mass spectrometry methods are in increasing demand; for instance, in research related to nutrition and aging. The nematode Caenorhabditis elegans is a key model organism in these fields, owing to the large repository of available C. elegans mutants and their convenient natural lifespan. Here, we describe a robust and sensitive analytical method for the semi-quantitative analysis of >100 polar (metabolomics) and >1000 apolar (lipidomics) metabolites in C. elegans, using a single-sample preparation. Our method is capable of reliably detecting a wide variety of biologically relevant metabolic aberrations in, for example, glycolysis and the tricarboxylic acid cycle, pyrimidine metabolism and complex lipid biosynthesis. In conclusion, we provide a powerful analytical tool that maximizes metabolic data yield from a single sample. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Caenorhabditis elegans/metabolismo , Lipidómica/métodos , Metabolómica/métodos , Animales , Caenorhabditis elegans/genética , Técnicas de Silenciamiento del Gen , Endogamia , Metaboloma , Fosfolípidos/metabolismo , Interferencia de ARN , Reproducibilidad de los Resultados
5.
Brain ; 142(11): 3382-3397, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31637422

RESUMEN

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Asunto(s)
Fosfatidiletanolaminas/biosíntesis , ARN Nucleotidiltransferasas/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Alelos , Animales , Atrofia , Encéfalo/patología , Niño , Preescolar , Discapacidades del Desarrollo/genética , Epilepsia/genética , Femenino , Técnicas de Inactivación de Genes , Variación Genética , Humanos , Lipidómica , Masculino , Ratones , ARN Nucleotidiltransferasas/deficiencia , Adulto Joven , Pez Cebra
6.
J Inherit Metab Dis ; 41(3): 479-487, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28849344

RESUMEN

Peroxisomes play an important role in a variety of metabolic pathways, including the α- and ß-oxidation of fatty acids, and the biosynthesis of ether phospholipids. Single peroxisomal enzyme deficiencies (PEDs) are a group of peroxisomal disorders in which either a peroxisomal matrix enzyme or a peroxisomal membrane transporter protein is deficient. To investigate the functional consequences of specific enzyme deficiencies on the lipidome, we performed lipidomics using cultured skin fibroblasts with different defects in the ß-oxidation of very long-chain fatty acids, including ABCD1- (ALD), acyl-CoA oxidase 1 (ACOX1)-, D-bifunctional protein (DBP)-, and acyl-CoA binding domain containing protein 5 (ACBD5)-deficient cell lines. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry revealed characteristic changes in the phospholipid composition in fibroblasts with different fatty acid ß-oxidation defects. Remarkably, we found that ether phospholipids, including plasmalogens, were decreased. We defined specific phospholipid ratios reflecting the different enzyme defects, which can be used to discriminate the PED fibroblasts from healthy control cells.


Asunto(s)
Fibroblastos/química , Fibroblastos/metabolismo , Lípidos/análisis , Metabolómica/métodos , Trastorno Peroxisomal/diagnóstico , Estudios de Casos y Controles , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/metabolismo , Humanos , Metabolismo de los Lípidos , Espectrometría de Masas/métodos , Oxidación-Reducción , Trastorno Peroxisomal/metabolismo , Peroxisomas/metabolismo , Piel/citología , Piel/metabolismo
7.
J Inherit Metab Dis ; 41(3): 489-498, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29209936

RESUMEN

Peroxisomes are ubiquitous cell organelles that play an important role in lipid metabolism. Accordingly, peroxisomal disorders, including the peroxisome biogenesis disorders and peroxisomal single-enzyme deficiencies, are associated with aberrant lipid metabolism. Lipidomics is an emerging tool for diagnosis, disease-monitoring, identifying lipid biomarkers, and studying the underlying pathophysiology in disorders of lipid metabolism. In this study, we demonstrate the potential of lipidomics for the diagnosis of peroxisomal disorders using plasma samples from patients with different types of peroxisomal disorders. We show that the changes in the plasma profiles of phospholipids, di- and triglycerides, and cholesterol esters correspond with the characteristic metabolite abnormalities that are currently used in the metabolic screening for peroxisomal disorders. The lipidomics approach, however, gives a much more detailed overview of the metabolic changes that occur in the lipidome. Furthermore, we identified novel unique lipid species for specific peroxisomal diseases that are candidate biomarkers. The results presented in this paper show the power of lipidomics approaches to enable the specific diagnosis of different peroxisomal disorders.


Asunto(s)
Lípidos/sangre , Metabolómica/métodos , Trastorno Peroxisomal/diagnóstico , Biomarcadores/análisis , Biomarcadores/sangre , Análisis Químico de la Sangre/métodos , Ácidos Grasos/metabolismo , Humanos , Metabolismo de los Lípidos , Trastorno Peroxisomal/sangre , Peroxisomas/metabolismo
8.
Sci Rep ; 7(1): 2408, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28546536

RESUMEN

Abnormal nutrient metabolism is a hallmark of aging, and the underlying genetic and nutritional framework is rapidly being uncovered, particularly using C. elegans as a model. However, the direct metabolic consequences of perturbations in life history of C. elegans remain to be clarified. Based on recent advances in the metabolomics field, we optimized and validated a sensitive mass spectrometry (MS) platform for identification of major metabolite classes in worms and applied it to study age and diet related changes. Using this platform that allowed detection of over 600 metabolites in a sample of 2500 worms, we observed marked changes in fatty acids, amino acids and phospholipids during worm life history, which were independent from the germ-line. Worms underwent a striking shift in lipid metabolism after early adulthood that was at least partly controlled by the metabolic regulator AAK-2/AMPK. Most amino acids peaked during development, except aspartic acid and glycine, which accumulated in aged worms. Dietary intervention also influenced worm metabolite profiles and the regulation was highly specific depending on the metabolite class. Altogether, these MS-based methods are powerful tools to perform worm metabolomics for aging and metabolism-oriented studies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Rasgos de la Historia de Vida , Metaboloma , Metabolómica , Factores de Edad , Aminoácidos/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografía Líquida de Alta Presión , Biología Computacional/métodos , Dieta , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Metabolómica/métodos , Mutación , Fosforilación , Reproducibilidad de los Resultados
9.
J Lipid Res ; 57(8): 1447-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27284103

RESUMEN

Peroxisomes are subcellular organelles involved in various metabolic processes, including fatty acid and phospholipid homeostasis. The Zellweger spectrum disorders (ZSDs) represent a group of diseases caused by a defect in the biogenesis of peroxisomes. Accordingly, cells from ZSD patients are expected to have an altered composition of fatty acids and phospholipids. Using an LC/MS-based lipidomics approach, we show that the phospholipid composition is characteristically altered in cultured primary skin fibroblasts from ZSD patients when compared with healthy controls. We observed a marked overall increase of phospholipid species containing very long-chain fatty acids, and a decrease of phospholipid species with shorter fatty acid species in ZSD patient fibroblasts. In addition, we detected a distinct phosphatidylcholine profile in ZSD patients with a severe and mild phenotype when compared with control cells. Based on our data, we present a set of specific phospholipid ratios for fibroblasts that clearly discriminate between mild and severe ZSD patients, and those from healthy controls. Our findings will aid in the diagnosis and prognosis of ZSD patients, including an increasing number of mild patients in whom hardly any abnormalities are observed in biochemical parameters commonly used for diagnosis.


Asunto(s)
Fibroblastos/metabolismo , Fosfolípidos/metabolismo , Síndrome de Zellweger/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Metabolismo de los Lípidos , Metabolómica , Síndrome de Zellweger/patología
10.
Hum Mol Genet ; 25(9): 1754-70, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908608

RESUMEN

The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a given BTHS-associated missense mutation impairs TAZ function has only been determined in a yeast model of this human disease. Presently, the detailed characterization of yeast tafazzin harboring individual BTHS mutations at evolutionarily conserved residues has identified seven distinct loss-of-function mechanisms caused by patient-associated missense alleles. However, whether the biochemical consequences associated with individual mutations also occur in the context of human TAZ in a validated mammalian model has not been demonstrated. Here, utilizing newly established monoclonal antibodies capable of detecting endogenous TAZ, we demonstrate that mammalian TAZ, like its yeast counterpart, is localized to the mitochondrion where it adopts an extremely protease-resistant fold, associates non-integrally with intermembrane space-facing membranes and assembles in a range of complexes. Even though multiple isoforms are expressed at the mRNA level, only a single polypeptide that co-migrates with the human isoform lacking exon 5 is expressed in human skin fibroblasts, HEK293 cells, and murine heart and liver mitochondria. Finally, using a new genome-edited mammalian BTHS cell culture model, we demonstrate that the loss-of-function mechanisms for two BTHS alleles that represent two of the seven functional classes of BTHS mutation as originally defined in yeast, are the same when modeled in human TAZ.


Asunto(s)
Síndrome de Barth/genética , Fibroblastos/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Mutación/genética , Piel/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Células Cultivadas , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Mitocondrias Cardíacas/patología , Mitocondrias Hepáticas/patología , Isoformas de Proteínas , Piel/citología , Factores de Transcripción/clasificación , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...