Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(9): 2124-2133, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38391238

RESUMEN

G-protein-coupled receptors (GPCRs) are structurally flexible membrane proteins that mediate a host of physiological responses to extracellular ligands like hormones and neurotransmitters. Fine features of their dynamic structural behavior are hypothesized to encode the functional plasticity seen in GPCR activity, where ligands with different efficacies can direct the same receptor toward different signaling phenotypes. Although the number of GPCR crystal structures is increasing, the receptors are characterized by complex and poorly understood conformational landscapes. Therefore, we employed a fluorescence microscopy assay to monitor conformational dynamics of single ß2 adrenergic receptors (ß2ARs). To increase the biological relevance of our findings, we decided not to reconstitute the receptor in detergent micelles but rather lipid membranes as proteoliposomes. The conformational dynamics were monitored by changes in the intensity of an environmentally sensitive boron-dipyrromethene (BODIPY 493/503) fluorophore conjugated to an endogenous cysteine (located at the cytoplasmic end of the sixth transmembrane helix of the receptor). Using total internal reflection fluorescence microscopy (TIRFM) and a single small unilamellar liposome assay that we previously developed, we followed the real-time dynamic properties of hundreds of single ß2ARs reconstituted in a native-like environment─lipid membranes. Our results showed that ß2AR-BODIPY fluctuates between several states of different intensity on a time scale of seconds, compared to BODIPY-lipid conjugates that show almost entirely stable fluorescence emission in the absence and presence of the full agonist BI-167107. Agonist stimulation changes the ß2AR dynamics, increasing the population of states with higher intensities and prolonging their durations, consistent with bulk experiments. The transition density plot demonstrates that ß2AR-BODIPY, in the absence of the full agonist, interconverts between states of low and moderate intensity, while the full agonist renders transitions between moderate and high-intensity states more probable. This redistribution is consistent with a mechanism of conformational selection and is a promising first step toward characterizing the conformational dynamics of GPCRs embedded in a lipid bilayer.


Asunto(s)
Compuestos de Boro , Lípidos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Conformación Molecular , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/química , Ligandos
2.
Nature ; 611(7937): 827-834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36418452

RESUMEN

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Asunto(s)
Encéfalo , Mamíferos , ATPasas de Translocación de Protón Vacuolares , Animales , Adenosina Trifosfato/metabolismo , Encéfalo/enzimología , Encéfalo/metabolismo , Mamíferos/metabolismo , Protones , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Factores de Tiempo , Cinética
3.
PLoS Comput Biol ; 15(12): e1007539, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869334

RESUMEN

The lumenal pH of an organelle is one of its defining characteristics and central to its biological function. Experiments have elucidated many of the key pH regulatory elements and how they vary from compartment-to-compartment, and continuum mathematical models have played an important role in understanding how these elements (proton pumps, counter-ion fluxes, membrane potential, buffering capacity, etc.) work together to achieve specific pH setpoints. While continuum models have proven successful in describing ion regulation at the cellular length scale, it is unknown if they are valid at the subcellular level where volumes are small, ion numbers may fluctuate wildly, and biochemical heterogeneity is large. Here, we create a discrete, stochastic (DS) model of vesicular acidification to answer this question. We used this simplified model to analyze pH measurements of isolated vesicles containing single proton pumps and compared these results to solutions from a continuum, ordinary differential equations (ODE)-based model. Both models predict similar parameter estimates for the mean proton pumping rate, membrane permeability, etc., but, as expected, the ODE model fails to report on the fluctuations in the system. The stochastic model predicts that pH fluctuations decrease during acidification, but noise analysis of single-vesicle data confirms our finding that the experimental noise is dominated by the fluorescent dye, and it reveals no insight into the true noise in the proton fluctuations. Finally, we again use the reduced DS model explore the acidification of large, lysosome-like vesicles to determine how stochastic elements, such as variations in proton-pump copy number and cycling between on and off states, impact the pH setpoint and fluctuations around this setpoint.


Asunto(s)
Modelos Biológicos , Orgánulos/metabolismo , Protones , Tampones (Química) , Biología Computacional , Simulación por Computador , Colorantes Fluorescentes , Concentración de Iones de Hidrógeno , Transporte Iónico , Potenciales de la Membrana , Permeabilidad , Bombas de Protones/metabolismo , Procesos Estocásticos
4.
Science ; 351(6280): 1469-73, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27013734

RESUMEN

In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Regulación Alostérica , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Concentración de Iones de Hidrógeno , Transporte Iónico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Imagen Molecular , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , Valinomicina/farmacología
5.
Nat Methods ; 11(9): 931-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086504

RESUMEN

Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the ß2-adrenergic receptor using ∼10(9)-fold less protein than conventional assays.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Fluorescente/métodos , Proteolípidos/química , Espectrometría de Fluorescencia/métodos , Nanotecnología/métodos , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...