RESUMEN
Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
Asunto(s)
Briófitas , Líquenes , Ecosistema , Cambio Climático , Plantas , Briófitas/fisiología , Líquenes/fisiologíaRESUMEN
Quantifying temperature and moisture at the soil surface is essential for understanding how soil surface biota respond to changes in the environment. However, at the soil surface these variables are highly dynamic and standard sensors do not explicitly measure temperature or moisture in the upper few millimeters of the soil profile. This paper describes methods for manufacturing simple, inexpensive sensors that simultaneously measure the temperature and moisture of the upper 5 mm of the soil surface. In addition to sensor construction, steps for quality control, as well as for calibration for various substrates, are explained. The sensors incorporate a Type E thermocouple to measure temperature and assess soil moisture by measuring the resistance between two gold-plated metal probes at the end of the sensor at a depth of 5 mm. The methods presented here can be altered to customize probes for different depths or substrates. These sensors have been effective in a variety of environments and have endured months of heavy rains in tropical forests as well as intense solar radiation in deserts of the southwestern U.S. Results demonstrate the effectiveness of these sensors for evaluating warming, drying, and freezing of the soil surface in a global change experiment.
Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Suelo/química , Temperatura , Agua/química , Calibración , Colorado , Congelación , Rayos InfrarrojosRESUMEN
BACKGROUND AND AIMS: Betony (Betonica officinalis L.) is one of the rarest and most spectacular plants in the Scandinavian flora. A long-term question has been whether it is spontaneous or introduced, or whether it comprises both spontaneous and introduced populations. This study aimed to answer this question by analyzing sequence data from the nuclear external transcribed spacer (ETS) region and three regions of the plastid genome, the trnT-trnL intergenic spacer (IGS) region, tRNA-Leu (trnL) intron, and the trnS-trnG IGS. MATERIALS AND METHODS: Altogether 41 samples from 11 European countries were analyzed. A unique duplication in the trnT-trnL IGS was detected in material from Skåne (southern Sweden), the "Skåne-duplication." Populations with this duplication are united on a moderately supported branch in the phylogeny based on plastid sequences. A distinct heath genotype from Yorkshire was discovered in the phylogeny based on plastid sequences and in a comparative cultivation. RESULTS: Phylogeny based on ETS sequences does not support any Scandinavian group, whereas a principal coordinates analysis ordination based on variable ETS positions indicated a spontaneous origin for all Scandinavian populations, which comprise a genetically well-defined subgroup of the species, most closely related to other spontaneous populations from adjacent parts of continental parts of northern Europe. DISCUSSION: Seven possible naturally occurring localities remain in Scandinavia, five in central Skåne, southernmost Sweden, and two on the southwestern part of the Danish island of Lolland.
RESUMEN
Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host-parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na(+) and Cl(-). Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host-parasite associations are a model system for the investigation of halophytes under different salt stress conditions.
RESUMEN
Biological soil crusts (BSCs) are microbial assemblages that occur worldwide and facilitate ecosystem development by nitrogen (N) and carbon accumulation. N turnover within BSC ecosystems has been intensively studied in the past; however, shifts in the N cycle during BSC development have not been previously investigated. Our aim was to characterise N cycle development first by the abundance of the corresponding functional genes (in brackets) and second by potential enzyme activities; we focussed on the four processes: N fixation (nifH), mineralisation as proteolysis and chitinolysis (chiA), nitrification (amoA) and denitrification (nosZ). We sampled from four phases of BSC development and from a reference located in the rooting zone of Corynephorus canescens, on an inland dune in Germany. BSC development was associated with increasing amounts of chlorophyll, organic carbon and N. Potential activities increased and were highest in developed BSCs. Similarly, the abundance of functional genes increased. We propose and discuss three stages of N process succession. First, the heterotrophic stage (mobile sand without BSCs) is dominated by mineralisation activity. Second, during the transition stage (initial BSCs), N accumulates, and potential nitrification and denitrification activity increases. Third, the developed stage (established BSCs and reference) is characterised by the dominance of nitrification.
Asunto(s)
Bacterias/metabolismo , Ecosistema , Ciclo del Nitrógeno , Microbiología del Suelo , Carbono/análisis , ADN Bacteriano/aislamiento & purificación , Desnitrificación , Genes Bacterianos , Alemania , Nitrificación , Nitrógeno/análisis , Fijación del Nitrógeno , Poaceae/microbiología , Dióxido de Silicio/química , Suelo/químicaRESUMEN
Biological soil crusts are important cryptogamic communities covering the sand dunes of the north-western Negev. The biological crusts contain cyanobacteria and other free-living N(2)-fixing bacteria and are hence able to fix atmospheric nitrogen (N). This is why they are considered to be one of the main N input pathways into the desert ecosystem. However, up to now, in situ determinations of the N(2) fixation in the field are not known to have been carried out. We examined the natural (15)N method to determine the biological N(2) fixation by these soil crusts under field conditions. This novel natural (15)N method uses the lichen Squamarina with symbiotic green algae--which are unable to fix N(2)--as a reference in order to determine N(2) fixation. Depending on the sampling location and year, the relative biological fixation of atmospheric nitrogen was estimated at 84-91% of the total N content of the biological soil crust. The cyanobacteria-containing soil lichen Collema had a fixation rate of about 88%. These fixation rates were used to derive an absolute atmospheric N input of 10-41 kg N ha(-1) year(-1). These values are reasonable results for the fixation of atmospheric N(2) by the biological crusts and cyanolichens and are in agreement with other comparable lab investigations. As far as we are aware, the results presented are the first to have been obtained from in situ field measurements, albeit only one location of the Negev with a small number of samples was investigated.
Asunto(s)
Atmósfera/química , Clima Desértico , Monitoreo del Ambiente/métodos , Fijación del Nitrógeno , Suelo/análisis , Cianobacterias/metabolismo , Ecosistema , Isótopos de Nitrógeno/análisis , Dióxido de Silicio/química , Microbiología del SueloRESUMEN
The variation of the natural 15N abundance is often used to evaluate the origin of nitrogen or the pathways of N input into ecosystems. We tried to use this approach to assess the main input pathways of nitrogen into the sand dune area of the north-western Negev Desert (Israel). The following two pathways are the main sources for nitrogen input into the system: i. Biological fixation of atmospheric nitrogen by cyanobacteria present in biological crusts and by N2-fixing vascular plants (e.g. the shrub Retama raetam); ii. Atmospheric input of nitrogen by wet deposition with rainfall, dry deposition of dust containing N compounds, and gaseous deposition. Samples were taken from selected environmental compartments such as biological crusts, sand underneath these crusts (down to a depth of 90 cm), N2-fixing and non-N2-fixing plants, atmospheric bulk deposition as well as soil from arable land north of the sandy area in three field campaigns in March 1998, 1999 and 2000. The delta15N values measured were in the following ranges: grass -2.5/1000 to +1.5/1000; R. reatam: +0.5/1000 to +4.5/1000; non-N2-fixing shrubs +1/1000 to +7/1000; sand beneath the biological crusts +4/1000 to +20/1000 (soil depth 2-90 cm); and arable land to the north up to 10/1000. Thus, the natural 15N abundance of the different N pools varies significantly. Accordingly, it should be feasible to assess different input pathways from the various 15N abundances of nitrogen. For example, the biological N fixation rates of the Fabaceae shrub R. reatam from the 15N abundances measured were calculated to be 46-86% of biomass N derived from the atmosphere. The biological crusts themselves generally show slight negative 15N values (-3/1000 to -0.5/1000), which can be explained by biological N fixation. However, areas with a high share of lichens, which are unable to fix atmospheric nitrogen, show very negative values down to -10/1000. The atmospheric N bulk deposition, which amounts to 1.9-3.8 kg N/hayr, has a 15N abundance between 4.4/1000 and 11.6/1000 and is likely to be caused by dust from the arable land to the north. Thus, it cannot be responsible for the very negative values of lichens measured either. There must be an additional N input from the atmosphere with negative delta15N values, e.g. gaseous N forms (NOx, NH3). To explain these conflicting findings, detailed information is still needed on the wet, particulate and gaseous atmospheric deposition of nitrogen.
Asunto(s)
Clima Desértico , Nitrógeno/análisis , Dióxido de Silicio/química , Ecosistema , Monitoreo del Ambiente , Israel , Isótopos de Nitrógeno/análisisRESUMEN
The ability of photosynthesis and CAM to acclimate to low (220 µmol m-2 s-1 ; LL) and relatively high (550 µmol m-2 s-1 ; HL) photosynthetic photon flux densities (PPFD) was investigated in the CAM-cycling species Delosperma tradescantioides by means of CO2 gas exchange and chlorophyll fluorescence analysis. Furthermore, the influence of short-term drought on malic acid accumulation and the activity of photosystem II (PSII) was studied to assess the possible interactions between drought and the prevailing PPFD in this species. HL plants showed features of sun versus shade acclimation relative to LL plants. Nocturnal malic acid accumulation (Δ-malate) and leaf water content also tended to be higher in HL plants. Irrespective of the PPFD during growth, the weak Δ-malate doubled within 3 days of drought. Despite largely restricted CO2 uptake, photosynthetic activity as estimated from fluorescence analysis declined only ca 5%. After 7 days of drought, when plants showed CAM-idling and Δ-malate had decreased again, potential carbon assimilation was still ca 84% of that in well-watered plants and remained relatively constant throughout the day. Decarboxylation of malic acid accounted for ca 23% of potential assimilation assuming total oxidation of a maximum portion of this organic acid. Drought did not affect predawn maximum photochemical efficiency (Fv /Fm ). Nonphotochemical quenching (qN) increased (24%) in response to desiccation and resulted in a more or less constant reduction state of PSII. This increase in qN resulted mainly from the change in its fast-relaxing component (qNF), while the slow component (qNS) was significant only at or above saturating PPFD in both HL and LL plants. The photon response characteristics of PSII, which differed between LL and HL plants, were unaffected by short-term drought. Photon harvesting and photon use were always adjusted to guarantee a low reduction state of PSII. Results suggest that in both LL and HL plants CAM-cycling may help to stabilize photosynthesis but to a large extent by other means than simply providing internally derived CO2 .