Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(1): eadj4686, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170783

RESUMEN

Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Animales , Ratones , Insulina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemia/complicaciones , Hipoglucemia/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Calgranulina B
2.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541251

RESUMEN

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Glucosa/metabolismo
3.
Gut ; 72(3): 472-483, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35580962

RESUMEN

OBJECTIVE: p63 is a transcription factor within the p53 protein family that has key roles in development, differentiation and prevention of senescence, but its metabolic actions remain largely unknown. Herein, we investigated the physiological role of p63 in glucose metabolism. DESIGN: We used cell lines and mouse models to genetically manipulate p63 in hepatocytes. We also measured p63 in the liver of patients with obesity with or without type 2 diabetes (T2D). RESULTS: We show that hepatic p63 expression is reduced on fasting. Mice lacking the specific isoform TAp63 in the liver (p63LKO) display higher postprandial and pyruvate-induced glucose excursions. These mice have elevated SIRT1 levels, while SIRT1 knockdown in p63LKO mice normalises glycaemia. Overexpression of TAp63 in wild-type mice reduces postprandial, pyruvate-induced blood glucose and SIRT1 levels. Studies carried out in hepatocyte cell lines show that TAp63 regulates SIRT1 promoter by repressing its transcriptional activation. TAp63 also mediates the inhibitory effect of insulin on hepatic glucose production, as silencing TAp63 impairs insulin sensitivity. Finally, protein levels of TAp63 are reduced in obese persons with T2D and are negatively correlated with fasting glucose and homeostasis model assessment index. CONCLUSIONS: These results demonstrate that p63 physiologically regulates glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sirtuina 1 , Transactivadores , Animales , Ratones , Glucosa/metabolismo , Hígado/metabolismo , Piruvatos/metabolismo , Sirtuina 1/metabolismo , Transactivadores/metabolismo
4.
Nat Commun ; 13(1): 4107, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840613

RESUMEN

Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis.


Asunto(s)
Diabetes Mellitus Experimental , Cetosis , Animales , Calgranulina B/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
J Am Soc Nephrol ; 33(4): 810-827, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35273087

RESUMEN

INTRODUCTION: CKD is associated with alterations of tubular function. Renal gluconeogenesis is responsible for 40% of systemic gluconeogenesis during fasting, but how and why CKD affects this process and the repercussions of such regulation are unknown. METHODS: We used data on the renal gluconeogenic pathway from more than 200 renal biopsies performed on CKD patients and from 43 kidney allograft patients, and studied three mouse models, of proteinuric CKD (POD-ATTAC), of ischemic CKD, and of unilateral urinary tract obstruction. We analyzed a cohort of patients who benefitted from renal catheterization and a retrospective cohort of patients hospitalized in the intensive care unit. RESULTS: Renal biopsies of CKD and kidney allograft patients revealed a stage-dependent decrease in the renal gluconeogenic pathway. Two animal models of CKD and one model of kidney fibrosis confirm gluconeogenic downregulation in injured proximal tubule cells. This shift resulted in an alteration of renal glucose production and lactate clearance during an exogenous lactate load. The isolated perfused kidney technique in animal models and renal venous catheterization in CKD patients confirmed decreased renal glucose production and lactate clearance. In CKD patients hospitalized in the intensive care unit, systemic alterations of glucose and lactate levels were more prevalent and associated with increased mortality and a worse renal prognosis at follow-up. Decreased expression of the gluconeogenesis pathway and its regulators predicted faster histologic progression of kidney disease in kidney allograft biopsies. CONCLUSION: Renal gluconeogenic function is impaired in CKD. Altered renal gluconeogenesis leads to systemic metabolic changes with a decrease in glucose and increase in lactate level, and is associated with a worse renal prognosis.


Asunto(s)
Gluconeogénesis , Insuficiencia Renal Crónica , Animales , Gluconeogénesis/fisiología , Humanos , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones , Insuficiencia Renal Crónica/metabolismo , Estudios Retrospectivos
6.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417460

RESUMEN

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Asunto(s)
Acetilglucosamina/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Restricción Calórica , Línea Celular , Colforsina/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagón/metabolismo , Glucocorticoides/metabolismo , Gluconeogénesis/efectos de los fármacos , Glicosilación , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Ácido Pirúvico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
7.
Nutr Diabetes ; 11(1): 4, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414371

RESUMEN

BACKGROUND/OBJECTIVES: Catch-up growth, an important risk factor for later obesity and type 2 diabetes, is often characterized by a high rate of fat deposition associated with hyperinsulinemia and glucose intolerance. We tested here the hypothesis that refeeding on a high-fat diet rich in essential polyunsaturated fatty acids (ePUFA) improves glucose homeostasis primarily by enhancing insulin sensitivity in skeletal muscles and adipose tissues. METHODS: Rats were caloric restricted for 2 weeks followed by 1-2 weeks of isocaloric refeeding on either a low-fat (LF) diet, a high-fat (HF) diet based on animal fat and high in saturated and monounsaturated fatty acids (HF SMFA diet), or a HF diet based on vegetable oils (1:1 mixture of safflower and linseed oils) and rich in the essential fatty acids linoleic and α-linolenic acids (HF ePUFA diet). In addition to measuring body composition and a test of glucose tolerance, insulin sensitivity was assessed during hyperinsulinemic-euglycemic clamps at the whole-body level and in individual skeletal muscles and adipose tissue depots. RESULTS: Compared to animals refed the LF diet, those refed the HF-SMFA diet showed a higher rate of fat deposition, higher plasma insulin and glucose responses during the test of glucose tolerance, and markedly lower insulin-stimulated glucose utilization at the whole body level (by a-third to a-half) and in adipose tissue depots (by 2-5 folds) during insulin clamps. While refeeding on the ePUFA diet prevented the increases in fat mass and in plasma insulin and glucose, the results of insulin clamps revealed that insulin-stimulated glucose utilization was not increased in skeletal muscles and only marginally higher in adipose tissues and at the whole-body level. CONCLUSIONS: These results suggest only a minor role for enhanced insulin sensitivity in the mechanisms by which diets high in ePUFA improves glucose homeostasis during catch-up growth.


Asunto(s)
Tejido Adiposo/metabolismo , Glucemia/metabolismo , Dieta Alta en Grasa/métodos , Ácidos Grasos Insaturados/administración & dosificación , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Animales , Peso Corporal , Dieta con Restricción de Grasas , Grasas de la Dieta/administración & dosificación , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Hiperinsulinismo/metabolismo , Insulina/sangre , Masculino , Ratas , Ratas Sprague-Dawley
8.
Nat Commun ; 11(1): 5808, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199701

RESUMEN

Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle.


Asunto(s)
Biocatálisis , Homeostasis , Metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Transducción de Señal , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Genotipo , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Células Musculares/citología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo
9.
Antioxid Redox Signal ; 32(9): 618-635, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31931619

RESUMEN

Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate ß-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, ß-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (ß) cells. In vivo, mice with ß-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in ß-cell failure in diabetic conditions.


Asunto(s)
Islotes Pancreáticos/metabolismo , NADPH Oxidasa 5/genética , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Secreción de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , NADPH Oxidasa 5/metabolismo
10.
Nat Commun ; 10(1): 3545, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391467

RESUMEN

Tens of millions suffer from insulin deficiency (ID); a defect leading to severe metabolic imbalance and death. The only means for management of ID is insulin therapy; yet, this approach is sub-optimal and causes life-threatening hypoglycemia. Hence, ID represents a great medical and societal challenge. Here we report that S100A9, also known as Calgranulin B or Myeloid-Related Protein 14 (MRP14), is a leptin-induced circulating cue exerting beneficial anti-diabetic action. In murine models of ID, enhanced expression of S100A9 alone (i.e. without administered insulin and/or leptin) slightly improves hyperglycemia, and normalizes key metabolic defects (e.g. hyperketonemia, hypertriglyceridemia, and increased hepatic fatty acid oxidation; FAO), and extends lifespan by at least a factor of two. Mechanistically, we report that Toll-Like Receptor 4 (TLR4) is required, at least in part, for the metabolic-improving and pro-survival effects of S100A9. Thus, our data identify the S100A9/TLR4 axis as a putative target for ID care.


Asunto(s)
Calgranulina B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Longevidad/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Toxina Diftérica/toxicidad , Ácidos Grasos/metabolismo , Humanos , Hiperglucemia/sangre , Hiperglucemia/etiología , Insulina/deficiencia , Leptina/administración & dosificación , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estreptozocina/toxicidad , Receptor Toll-Like 4/genética
11.
Cell Rep ; 27(8): 2385-2398.e3, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31116983

RESUMEN

Loss of synchrony between geophysical time and insulin action predisposes to metabolic diseases. Yet the brain and peripheral pathways linking proper insulin effect to diurnal changes in light-dark and feeding-fasting inputs are poorly understood. Here, we show that the insulin sensitivity of several metabolically relevant tissues fluctuates during the 24 h period. For example, in mice, the insulin sensitivity of skeletal muscle, liver, and adipose tissue is lowest during the light period. Mechanistically, by performing loss- and gain-of-light-action and food-restriction experiments, we demonstrate that SIRT1 in steroidogenic factor 1 (SF1) neurons of the ventromedial hypothalamic nucleus (VMH) convey photic inputs to entrain the biochemical and metabolic action of insulin in skeletal muscle. These findings uncover a critical light-SF1-neuron-skeletal-muscle axis that acts to finely tune diurnal changes in insulin sensitivity and reveal a light regulatory mechanism of skeletal muscle function.


Asunto(s)
Insulina/metabolismo , Músculo Esquelético/metabolismo , Fototerapia/métodos , Núcleo Hipotalámico Ventromedial/fisiopatología , Animales , Ritmo Circadiano , Humanos , Ratones
12.
Cell Metab ; 28(6): 907-921.e7, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174308

RESUMEN

Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4-/- bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4-/- or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Proteínas Bacterianas/metabolismo , Restricción Calórica , Hígado Graso/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal , Lípido A/metabolismo , Tejido Adiposo Beige/citología , Animales , Eosinófilos/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo
13.
Nat Commun ; 8(1): 1820, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29180649

RESUMEN

Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-induced PTPR-γ expression. PTPR-γ loss-of-function lowers glycemia and insulinemia by enhancing insulin-stimulated suppression of endogenous glucose production. These phenotypes are rescued by re-expression of Ptprg only in liver of mice lacking Ptprg globally. Hepatic PTPR-γ overexpression that mimics levels found in obesity is sufficient to cause severe hepatic and systemic insulin resistance. We propose hepatic PTPR-γ as a link between obesity-induced inflammation and insulin resistance and as potential target for treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Adulto , Anciano , Animales , Glucemia , Línea Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Células Hep G2 , Humanos , Inflamación/metabolismo , Insulina/sangre , Interleucina-6/metabolismo , Metabolismo de los Lípidos , Lipopolisacáridos/efectos adversos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Persona de Mediana Edad , Modelos Animales , FN-kappa B/metabolismo , Obesidad/sangre , Obesidad/complicaciones , Proteínas Tirosina Fosfatasas/metabolismo , ARN Mensajero/biosíntesis , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Sirtuina 1/metabolismo
14.
PLoS One ; 11(9): e0162517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27618559

RESUMEN

Physiological processes at adulthood, such as energy metabolism and insulin sensitivity may originate before or weeks after birth. These underlie the concept of fetal and/or neonatal programming of adult diseases, which is particularly relevant in the case of obesity and type 2 diabetes. The aim of this study was to determine the impact of a perinatal high fat diet on energy metabolism and on leptin as well as insulin sensitivity, early in life and at adulthood in two strains of rats presenting different susceptibilities to diet-induced obesity. The impact of a perinatal high fat diet on glucose tolerance and diet-induced obesity was also assessed. The development of glucose intolerance and of increased fat mass was confirmed in the obesity-prone Wistar rat, even after 28 days of age. By contrast, in obesity-resistant Lou/C rats, an improved early leptin signaling may be responsible for the lack of deleterious effect of the perinatal high fat diet on glucose tolerance and increased adiposity in response to high fat diet at adulthood. Altogether, this study shows that, even if during the perinatal period adaptation to the environment appears to be genetically determined, adaptive mechanisms to nutritional challenges occurring at adulthood can still be observed in rodents.


Asunto(s)
Dieta Alta en Grasa , Leptina/metabolismo , Obesidad/genética , Periodo Posparto , Transducción de Señal , Animales , Glucemia/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Masculino , Embarazo , Ratas , Ratas Wistar
15.
Cell Metab ; 24(3): 434-446, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27568549

RESUMEN

Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Restricción Calórica , Inmunidad , Transducción de Señal/inmunología , Tejido Adiposo Beige/metabolismo , Animales , Dieta , Conducta Alimentaria , Glucosa/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Obesos , Grasa Subcutánea/metabolismo , Termogénesis
16.
Cell Physiol Biochem ; 38(3): 1218-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982498

RESUMEN

BACKGROUND/AIMS: Fibroblast growth factor 21 (FGF21), a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21. METHODS: We investigated a potential regulation of FGF21 by leptin in vivo in Wistar rats and in vitro using human derived hepatocarcinoma HepG2 cells. This model was chosen as the liver is considered the main FGF21 expression site. RESULTS: We found that leptin injections increased plasma FGF21 levels in adult Wistar rats. This was confirmed in vitro, as leptin increased FGF21 expression in HepG2 cells. We also showed that the leptin effect on FGF21 expression was mediated by STAT3 activation in HepG2 cells. CONCLUSION: New findings regarding a leptin-STAT3-FGF21 axis were provided in this study, although investigating the exact mechanisms linking leptin and FGF21 are still needed. These results are of great interest in the context of identifying potential new clinical approaches to treat metabolic diseases associated with insulin resistance, such as obesity and type 2 diabetes.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Leptina/metabolismo , Hígado/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Masculino , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo
17.
Cell ; 163(6): 1360-74, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638070

RESUMEN

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Homeostasis , Tejido Adiposo Blanco/metabolismo , Animales , Apoptosis , Frío , Enterocitos/citología , Enterocitos/metabolismo , Vida Libre de Gérmenes , Resistencia a la Insulina , Absorción Intestinal , Ratones , Verrucomicrobia/metabolismo
18.
Nat Med ; 21(12): 1497-1501, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26569380

RESUMEN

Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Microbiota , Obesidad/microbiología , Obesidad/patología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Tamaño de la Célula/efectos de los fármacos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Vida Libre de Gérmenes , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/farmacología , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
19.
Diabetes ; 64(11): 3700-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26224884

RESUMEN

Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A ß3 adrenergic agonist was administered for 2 weeks in Wistar and Lou/C rats to activate UCP1 and delineate its metabolic impact. The treatment brought about decreases in fat mass and improvements in insulin sensitivity in both groups. In BAT, UCP1 expression increased similarly in response to the treatment in the two groups. However, the intervention induced the appearance of beige cells in iWAT, associated with a marked increase in UCP1 expression, in Lou/C rats only. This increase was correlated with a markedly enhanced glucose uptake measured during euglycemic-hyperinsulinemic clamps, suggesting a role of beige cells in this process. Activation of UCP1 in ectopic tissues, such as beige cells in iWAT, may be an interesting therapeutic approach to prevent body weight gain, decrease fat mass, and improve insulin sensitivity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Resistencia a la Insulina/fisiología , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Dioxoles/farmacología , Canales Iónicos/genética , Masculino , Proteínas Mitocondriales/genética , Obesidad/genética , Ratas , Ratas Wistar , Termogénesis/efectos de los fármacos , Termogénesis/fisiología , Proteína Desacopladora 1
20.
Front Physiol ; 6: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25688211

RESUMEN

Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in "beige cells" in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to "browning" of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, ß3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...