Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(2): 108837, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303705

RESUMEN

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.

3.
Chest ; 163(3): 575-585, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36272567

RESUMEN

BACKGROUND: The vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a newly identified autoinflammatory disorder related to somatic UBA1 mutations. Up to 72% of patients may show lung involvement. RESEARCH QUESTION: What are the pleuropulmonary manifestations in VEXAS syndrome? STUDY DESIGN AND METHODS: One hundred fourteen patients were included in the French cohort of VEXAS syndrome between November 2020 and May 2021. Each patient included in the study who had an available chest CT scan was discussed in an adjudication multidisciplinary team and classified as showing potentially pleuropulmonary-specific involvement of VEXAS syndrome or others. RESULTS: Fifty-one patients had a CT scan available for review and 45 patients (39%) showed pleuropulmonary abnormalities on chest CT scan that were considered related to VEXAS syndrome after adjudication. Most patients were men (95%) with a median age 67.0 years at the onset of symptoms. Among these 45 patients, 44% reported dyspnea and 40% reported cough. All 45 patients showed lung opacities on chest CT scan (including ground-glass opacities [87%], consolidations [49%], reticulation [38%], and septal lines [51%]) and 53% of patients showed pleural effusion. Most patients showed improvement with prednisone, but usually required > 20 mg/d. The main clinical and biological features as well the median survival did not differ between the 45 patients with pleuropulmonary involvement and the rest of the cohort, suggesting that the prevalence of pleuropulmonary involvement might have been underdiagnosed in the rest of the cohort. INTERPRETATION: Pulmonary manifestations are frequent in VEXAS syndrome, but rarely are at the forefront. The initial outcome is favorable with prednisone and does not seem to lead to pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Vacuolas , Masculino , Humanos , Anciano , Femenino , Prednisona , Pulmón/diagnóstico por imagen , Pulmón/patología , Fibrosis Pulmonar/patología , Síndrome , Mutación
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362244

RESUMEN

Elastic fibers, made of elastin (90%) and fibrillin-rich microfibrils (10%), are the key extracellular components, which endow the arteries with elasticity. The alteration of elastic fibers leads to cardiovascular dysfunctions, as observed in elastin haploinsufficiency in mice (Eln+/-) or humans (supravalvular aortic stenosis or Williams-Beuren syndrome). In Eln+/+ and Eln+/- mice, we evaluated (arteriography, histology, qPCR, Western blots and cell cultures) the beneficial impact of treatment with a synthetic elastic protein (SEP), mimicking several domains of tropoelastin, the precursor of elastin, including hydrophobic elasticity-related domains and binding sites for elastin receptors. In the aorta or cultured aortic smooth muscle cells from these animals, SEP treatment induced a synthesis of elastin and fibrillin-1, a thickening of the aortic elastic lamellae, a decrease in wall stiffness and/or a strong trend toward a reduction in the elastic lamella disruptions in Eln+/- mice. SEP also modified collagen conformation and transcript expressions, enhanced the aorta constrictive response to phenylephrine in several animal groups, and, in female Eln+/- mice, it restored the normal vasodilatory response to acetylcholine. SEP should now be considered as a biomimetic molecule with an interesting potential for future treatments of elastin-deficient patients with altered arterial structure/function.


Asunto(s)
Enfermedades Vasculares , Síndrome de Williams , Humanos , Ratones , Masculino , Femenino , Animales , Elastina/metabolismo , Tejido Elástico/metabolismo , Haploinsuficiencia , Aorta/metabolismo , Enfermedades Vasculares/patología
6.
RMD Open ; 8(2)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36319066

RESUMEN

OBJECTIVES: To assess the tolerance and efficacy of targeted therapies prescribed off-label in refractory low-prevalence autoimmune and inflammatory systemic diseases. METHODS: The TATA registry (TArgeted Therapy in Autoimmune Diseases) is a prospective, observational, national and independent cohort follow-up. The inclusion criteria in the registry are as follows: age >18 years; low-prevalence autoimmune and inflammatory systemic disease treated with off-label drugs started after 1 January 2019. RESULTS: Hundred (100) patients (79 women) were enrolled. The median age was 52.5 years (95% CI 49 to 56) and the median disease duration before enrolment was 5 years (3 to 7). The targeted therapies at enrolment were as follows: Janus kinase/signal transducers and activators of transcription inhibitors (44%), anti-interleukin (IL)-6R (22%), anti-IL-12/23, anti-IL-23 and anti-IL-17 (9%), anti-B cell activating factor of the tumour necrosis factor family (5%), abatacept (5%), other targeted treatments (9%) and combination of targeted treatments (6%). 73% of patients were receiving corticosteroid therapy at enrolment (median dose 10 mg/day). The current median follow-up time is 9 months (8 to 10).Safety: 11 serious infections (incidence rate of 14.8/100 patient-years) and 1 cancer (1.3 cancers/100 patient-years) were observed. Two patients died from severe COVID-19 (2.7 deaths/100 patient-years).Efficacy: the targeted treatment was considered effective by the clinician in 56% of patients and allowed, in responders, a median reduction of oral corticosteroids of 15 (9 to 21) mg/day, below 7.5 mg/day in 76% of patients, while 28% discontinued. CONCLUSION: These initial results of the TATA registry confirm the diversity of targeted treatments prescribed off-label in refractory autoimmune diseases and their corticosteroid-sparing effect when effective. Tolerance was acceptable in these refractory patients with a long history of treatment with immunosuppressive drugs.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Adolescente , Femenino , Humanos , Persona de Mediana Edad , Interleucina-23 , Uso Fuera de lo Indicado , Estudios Prospectivos , Sistema de Registros
7.
Open Forum Infect Dis ; 9(8): ofac351, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991591

RESUMEN

Chronic active Epstein-Barr virus (CAEBV) infection is usually a fatal disease associated with clonal proliferation of EBV-infected T or NK cells. We present the case of a 33-year-old Peruvian patient who developed a multisystem CAEBV, notably responsible for exceptional ophthalmological and renal damage. We describe the clinicopathological features of EBV-induced lymphoproliferative disorder.

8.
Antioxidants (Basel) ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36009181

RESUMEN

RATIONALE: Intermittent hypoxia (IH) is one of the main features of sleep-disordered breathing (SDB). Recent findings indicate that hypoxia inducible factor-1 (HIF-1) promotes cardiomyocytes apoptosis during chronic IH, but the mechanisms involved remain to be elucidated. Here, we hypothesize that IH-induced ER stress is associated with mitochondria-associated ER membrane (MAM) alteration and mitochondrial dysfunction, through HIF-1 activation. METHODS: Right atrial appendage biopsies from patients with and without SDB were used to determine HIF-1α, Grp78 and CHOP expressions. Wild-type and HIF-1α+/- mice were exposed to normoxia (N) or IH (21-5% O2, 60 cycles/h, 8 h/day) for 21 days. Expressions of HIF-1α, Grp78 and CHOP, and apoptosis, were measured by Western blot and immunochemistry. In isolated cardiomyocytes, we examined structural integrity of MAM by proximity ligation assay and their function by measuring ER-to-mitochondria Ca2+ transfer by confocal microscopy. Finally, we measured mitochondrial respiration using oxygraphy and calcium retention capacity (CRC) by spectrofluorometry. MAM structure was also investigated in H9C2 cells incubated with 1 mM CoCl2, a potent HIF-1α inducer. RESULTS: In human atrial biopsies and mice, IH induced HIF-1 activation, ER stress and apoptosis. IH disrupted MAM, altered Ca2+ homeostasis, mitochondrial respiration and CRC. Importantly, IH had no effect in HIF-1α+/- mice. Similar to what observed under IH, HIF-1α overexpression was associated with MAM alteration in H9C2. CONCLUSION: IH-induced ER stress, MAM alterations and mitochondrial dysfunction were mediated by HIF-1; all these intermediate mechanisms ultimately inducing cardiomyocyte apoptosis. This suggests that HIF-1 modulation might limit the deleterious cardiac effects of SDB.

9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35987325

RESUMEN

The perinatal exposome can modify offspring metabolism and health later in life. Within this concept, maternal exercise during gestation has been reported modifying offspring glucose sensing and homeostasis, while the impact of such exercise during lactation is little-known. We thus aimed at evaluating short- and long-term effects of it on offspring pancreatic function, assuming a link with changes in breast milk composition. Fifteen-week-old primiparous female Wistar rats exercised during lactation at a constant submaximal intensity (TR) or remained sedentary (CT). Male offspring were studied at weaning and at 7 months of age for growth, pancreas weight, glycemia and insulin responses. Milk protein content was determined by the bicinchoninic acid assay (BCA colorimetric method), and lipid content and fatty acid composition by gas chromatography. Mature milk from TR rats contained significantly less saturated (-7 %) and more monounsaturated (+18 %) and polyunsaturated (PUFA +12 %) fatty acids compared to CT rats, with no difference in total lipid and protein concentrations. In offspring from TR vs CT mothers, fasting glycemia was lower, pancreas weight was higher with a lower insulin content (-37 %) at weaning. Such outcomes were correlated with milk PUFA levels and indices of desaturase or elongase activities. These effects were no longer present at 7 months, whereas a more efficient muscle insulin sensitivity was observed. Maternal training during lactation led to a specific milk phenotype that was associated with a short-term impact on glucose homeostasis and pancreatic function of the male offspring.


Asunto(s)
Ácidos Grasos , Leche , Condicionamiento Físico Animal , Animales , Glucemia/metabolismo , Ácido Graso Desaturasas , Elongasas de Ácidos Grasos , Ácidos Grasos/análisis , Femenino , Homeostasis , Insulina/metabolismo , Lactancia , Masculino , Leche/química , Proteínas de la Leche/análisis , Embarazo , Ratas , Ratas Wistar
10.
Nutr Metab Cardiovasc Dis ; 32(7): 1797-1807, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618560

RESUMEN

BACKGROUND AND AIMS: TOTUM-63, a fibre and polyphenol rich plant-based composition, has been demonstrated to significantly improve body weight and glucose homeostasis in animal models of obesity. Our study aimed at exploring whether the mechanisms include modulation of gut (glucose-dependent insulinotropic peptide (GIP), glucagon-like petide-1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY)) and pancreatic (insulin, glucagon) hormones, all important regulators of glucose control, appetite and body weight. METHODS AND RESULTS: Male C57BL/6JRJ mice were assigned to either standard chow (CON), high fat diet (HF, 60% energy from fat) or HF-TOTUM-63 (HF diet 60% supplemented with TOTUM-63 2.7%) for 10 weeks. In vivo glucose homeostasis (oral glucose tolerance test (OGTT), intraperitoneal pyruvate tolerance test (ipPTT)), glucose-induced portal vein hormone concentration, gut hormone gene expression and protein content as well as enteroendocrine cell contents were assessed at the end of the dietary intervention. The present study evidenced that TOTUM-63 reduced food intake, limited weight gain and improved glucose and pyruvate tolerance of HF-fed animals. This was associated with an increase in PYY content in the colon, an altered pattern of PYY secretion between fasted and glucose-stimulated states, and with a significant improvement in the portal vein concentration of GLP-1, insulin and glucagon, but not GIP and CCK, in response to glucose stimulation. CONCLUSION: Overall, these data suggest that TOTUM-63 might have a specific impact on gut L-cells and on the expression and secretion of GLP-1 and PYY incretins, potentially contributing to the reduced food intake, body weight gain and improved glucose homeostasis.


Asunto(s)
Glucagón , Extractos Vegetales/farmacología , Polifenoles , Animales , Glucemia/metabolismo , Peso Corporal , Dieta Alta en Grasa , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Péptido YY , Polifenoles/farmacología , Piruvatos , Aumento de Peso
12.
Physiol Rep ; 10(5): e15151, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35274817

RESUMEN

The global prevalence of type 2 diabetes (T2D) is expected to exceed 642 million people by 2040. Metformin is a widely used biguanide T2D therapy, associated with rare but serious events of lactic acidosis, in particular with predisposing conditions (e.g., renal failure or major surgery). Imeglimin, a recently approved drug, is the first in a new class (novel mode of action) of T2D medicines. Although not a biguanide, Imeglimin shares a chemical moiety with Metformin and also modulates mitochondrial complex I activity, a potential mechanism for Metformin-mediated lactate accumulation. We interrogated the potential for Imeglimin to induce lacticacidosis in relevant animal models and further assessed differences in key mechanisms known for Metformin's effects. In a dog model of major surgery, Metformin or Imeglimin (30-1000 mg/kg) was acutely administered, only Metformin-induced lactate accumulation and pH decrease leading to lactic acidosis with fatality at the highest dose. Rats with gentamycin-induced renal insufficiency received Metformin or Imeglimin (50-100 mg/kg/h), only Metformin increased lactatemia and H+ concentrations with mortality at higher doses. Plasma levels of Metformin and Imeglimin were similar in both models. Mice were chronically treated with Metformin or Imeglimin 200 mg/kg bid. Only Metformin produced hyperlactatemia after acute intraperitoneal glucose loading. Ex vivo measurements revealed higher mitochondrial complex I inhibition with Metformin versus slight effects with Imeglimin. Another mechanism implicated in Metformin's effects on lactate production was assessed: in isolated rat, liver mitochondria exposed to Imeglimin or Metformin, only Metformin (50-250 µM) inhibited the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). In liver samples from chronically treated mice, measured mGPDH activity was lower with Metformin versus Imeglimin. These data indicate that the risk of lactic acidosis with Imeglimin treatment may be lower than with Metformin and confirm that the underlying mechanisms of action are distinct, supporting its potential utility for patients with predisposing conditions.


Asunto(s)
Acidosis Láctica , Diabetes Mellitus Tipo 2 , Metformina , Insuficiencia Renal , Acidosis Láctica/inducido químicamente , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Perros , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Ácido Láctico , Metformina/efectos adversos , Metformina/uso terapéutico , Ratones , Ratas , Triazinas
13.
Front Med (Lausanne) ; 9: 829979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252260

RESUMEN

Sleep Apnea Syndrome (SAS) is one of the most common chronic diseases, affecting nearly one billion people worldwide. The repetitive occurrence of abnormal respiratory events generates cyclical desaturation-reoxygenation sequences known as intermittent hypoxia (IH). Among SAS metabolic sequelae, it has been established by experimental and clinical studies that SAS is an independent risk factor for the development and progression of non-alcoholic fatty liver disease (NAFLD). The principal goal of this study was to decrypt the molecular mechanisms at the onset of IH-mediated liver injury. To address this question, we used a unique mouse model of SAS exposed to IH, employed unbiased high-throughput transcriptomics and computed network analysis. This led us to examine hepatic mitochondrial ultrastructure and function using electron microscopy, high-resolution respirometry and flux analysis in isolated mitochondria. Transcriptomics and network analysis revealed that IH reprograms Nuclear Respiratory Factor- (NRF-) dependent gene expression and showed that mitochondria play a central role. We thus demonstrated that IH boosts the oxidative capacity from fatty acids of liver mitochondria. Lastly, the unbalance between oxidative stress and antioxidant defense is tied to an increase in hepatic ROS production and DNA damage during IH. We provide a comprehensive analysis of liver metabolism during IH and reveal the key role of the mitochondria at the origin of development of liver disease. These findings contribute to the understanding of the mechanisms underlying NAFLD development and progression during SAS and provide a rationale for novel therapeutic targets and biomarker discovery.

14.
Endocrinol Diabetes Metab ; 4(2): e00211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33855213

RESUMEN

Aims: To understand the mechanism by which imeglimin (a new oral hypoglycemic agent whose phase 3 development program in Japan has now been completed) decreases hepatic glucose production. Materials and methods: We compared the effect of imeglimin and metformin on glucose production, ATP/ADP ratio, oxygen consumption rate, mitochondrial redox potential and membrane potential in primary rat hepatocytes. Results: We found that both imeglimin and metformin dose-dependently decreased glucose production and the ATP/ADP ratio. Moreover, they both increased mitochondrial redox potential (assessed by mitochondrial NAD(P)H fluorescence) and decreased membrane potential (assessed by TMRM fluorescence). However, contrary to metformin, which inhibits mitochondrial Complex I, imeglimin did not decrease the oxygen consumption rate in intact cells. By measuring the oxygen consumption of in situ respiratory chain as a function of the concentration of NADH, we observed that imeglimin decreased the affinity of NADH for the respiratory chain but did not affect its Vmax (ie competitive inhibition) whereas metformin decreased both the Vmax and the affinity (ie uncompetitive inhibition). Conclusions: We conclude that imeglimin induces a kinetic constraint on the respiratory chain that does not affect its maximal activity. This kinetic constraint is offset by a decrease in the mitochondrial membrane potential, which induces a thermodynamic constraint on the ATPase responsible for a decrease in the ATP/ADP ratio.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Hepatocitos/metabolismo , Hipoglucemiantes/farmacología , Triazinas/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metformina/farmacología , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Wistar
15.
Biomedicines ; 9(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918467

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, characterized by hepatic steatosis without any alcohol abuse. As the prevalence of NAFLD is rapidly increasing worldwide, important research activity is being dedicated to deciphering the underlying molecular mechanisms in order to define new therapeutic targets. To investigate these pathways and validate preclinical study, reliable, simple and reproducible tools are needed. For that purpose, animal models, more precisely, diet-induced NAFLD and nonalcoholic steatohepatitis (NASH) models, were developed to mimic the human disease. In this review, we focus on rat models, especially in the current investigation of the establishment of the dietary model of NAFLD and NASH in this species, compiling the different dietary compositions and their impact on histological outcomes and metabolic injuries, as well as external factors influencing the course of liver pathogenesis.

16.
Physiol Rep ; 9(5): e14738, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33682327

RESUMEN

BACKGROUND: Intermittent hypoxia (IH) is the major feature of obstructive sleep apnea syndrome, well-known to induce cardiometabolic complications. We previously demonstrated that IH induces hyperinsulinemia and associated altered insulin signaling in adipose tissue, liver, and skeletal muscle, but impact of IH on cardiac insulin signaling and functional/structural consequences remains unknown. Therefore, the aims of this study were to investigate in both lean and obese mice the effects of chronic IH on the following: (1) cardiac insulin signaling and (2) cardiac remodeling and function. METHODS: C57BL/6 J male mice were fed low-fat (LFD) or high-fat (HFD) diet for 20 weeks, and exposed to IH (21-5% FiO2, 60 s cycle, 8 h/day) or normoxia (N) for the last 6 weeks. Systemic insulin sensitivity was evaluated by an insulin tolerance test. Cardiac remodeling and contractile function were assessed by cardiac ultrasonography. Ultimately, hearts were withdrawn for biochemical and histological analysis. RESULTS: In LFD mice, IH-induced hyperinsulinemia and systemic insulin resistance that were associated with increased phosphorylations of cardiac insulin receptor and Akt on Tyr1150 and Ser473 residues, respectively. In addition, IH significantly increased cardiac interstitial fibrosis and cardiac contractility. In the HFD group, IH did not exert any additional effect, nor on insulin/Akt signaling, nor on cardiac remodeling and function. CONCLUSION: Our study suggests that, despite systemic insulin resistance, IH exposure mediates an adaptive cardiac response in lean but not in obese mice. Further studies are needed to investigate which specific mechanisms are involved and to determine the long-term evolution of cardiac responses to IH.


Asunto(s)
Hipoxia/metabolismo , Resistencia a la Insulina/fisiología , Insulina/sangre , Obesidad/complicaciones , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Hipoxia/fisiopatología , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Ratones , Obesidad/metabolismo
17.
Diabetes Obes Metab ; 23(3): 664-673, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33269554

RESUMEN

Imeglimin is an investigational first-in-class novel oral agent for the treatment of type 2 diabetes (T2D). Several pivotal phase III trials have been completed with evidence of statistically significant glucose lowering and a generally favourable safety and tolerability profile, including the lack of severe hypoglycaemia. Imeglimin's mechanism of action involves dual effects: (a) amplification of glucose-stimulated insulin secretion (GSIS) and preservation of ß-cell mass; and (b) enhanced insulin action, including the potential for inhibition of hepatic glucose output and improvement in insulin signalling in both liver and skeletal muscle. At a cellular and molecular level, Imeglimin's underlying mechanism may involve correction of mitochondrial dysfunction, a common underlying element of T2D pathogenesis. It has been observed to rebalance respiratory chain activity (partial inhibition of Complex I and correction of deficient Complex III activity), resulting in reduced reactive oxygen species formation (decreasing oxidative stress) and prevention of mitochondrial permeability transition pore opening (implicated in preventing cell death). In islets derived from diseased rodents with T2D, Imeglimin also enhances glucose-stimulated ATP generation and induces the synthesis of nicotinamide adenine dinucleotide (NAD+ ) via the 'salvage pathway'. In addition to playing a key role as a mitochondrial co-factor, NAD+ metabolites may contribute to the increase in GSIS (via enhanced Ca++ mobilization). Imeglimin has also been shown to preserve ß-cell mass in rodents with T2D. Overall, Imeglimin appears to target a key root cause of T2D: defective cellular energy metabolism. This potential mode of action is unique and has been shown to differ from that of other major therapeutic classes, including biguanides, sulphonylureas and glucagon-like peptide-1 receptor agonists.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Humanos , Hipoglucemiantes/uso terapéutico , Insulina , Triazinas
19.
Cells ; 8(11)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731523

RESUMEN

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Asunto(s)
Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Membranas Mitocondriales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Wortmanina/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-31133988

RESUMEN

Metformin is a drug from the biguanide family that is used for decades as the first-line therapeutic choice for the treatment of type 2 diabetes. Despite its worldwide democratization, owing to its clinical efficacy, high safety profile and cheap cost, the exact mechanism(s) of action of this anti-hyperglycemic molecule with pleiotropic properties still remains to be fully elucidated. The concept that metformin would exert some of its actions though modulation of the mitochondrial bioenergetics was initially forged in the 50s but undeniably revived at the beginning of the twenty-first century when it was shown to induce a weak but specific inhibition of the mitochondrial respiratory-chain complex 1. Furthermore, metformin has been reported to reduce generation of reactive oxygen species at the complex 1 and to prevent mitochondrial-mediated apoptosis, suggesting that it can protect against oxidative stress-induced cell death. Nevertheless, despite some recent progress and the demonstration of its key role in the inhibition of hepatic gluconeogenesis, the exact nature of the mitochondrial interaction between the drug and the complex 1 is still poorly characterized. Recent studies reported that metformin may also have anti-neoplastic properties by inhibiting cancer cell growth and proliferation, at least partly through its mitochondrial action. As such, many trials are currently conducted for exploring the repositioning of metformin as a potential drug for cancer therapy. In this mini-review, we discuss both historical and more recent findings on the central role played by the interaction between metformin and the mitochondria in its cellular mechanism of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA