Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38595321

RESUMEN

BACKGROUND: Data on dermatological manifestations of Costello syndrome (CS) remain heterogeneous and lack in validated description. OBJECTIVES: To describe the dermatological manifestations of CS; compare them with the literature findings; assess those discriminating CS from other RASopathies, including cardiofaciocutaneous syndrome (CFCS) and the main types of Noonan syndrome (NS); and test for dermatological phenotype-genotype correlations. METHODS: We performed a 10-year, large, prospective, multicentric, collaborative dermatological and genetic study. RESULTS: Thirty-one patients were enrolled. Hair abnormalities were ubiquitous, including wavy or curly hair and excessive eyebrows, respectively in 68% and 56%. Acral excessive skin (AES), papillomas and keratotic papules (PKP), acanthosis nigricans (AN), palmoplantar hyperkeratosis (PPHK) and 'cobblestone' papillomatous papules of the upper lip (CPPUL), were noted respectively in 84%, 61%, 65%, 55% and 32%. Excessive eyebrows, PKP, AN, CCPUL and AES best differentiated CS from CFCS and NS. Multiple melanocytic naevi (>50) may constitute a new marker of attenuated CS associated with intragenic duplication in HRAS. Oral acitretin may be highly beneficial for therapeutic management of PPHK. No significant dermatological phenotype-genotype correlation was determined between patients with and without HRAS c.34G>A (p.G12S). CONCLUSIONS AND RELEVANCE: This validated phenotypic characterization of a large number of patients with CS will allow future researchers to make a positive diagnosis, and to differentiate CS from CFCS and NS.

2.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605277

RESUMEN

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Asunto(s)
Proteínas de Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Eritropoyesis , Ratones Noqueados , Microcefalia , Proteína p53 Supresora de Tumor , Animales , Eritropoyesis/genética , Microcefalia/genética , Microcefalia/patología , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Mutación , Anemia Macrocítica/genética , Anemia Macrocítica/patología , Anemia Macrocítica/metabolismo , Diferenciación Celular/genética , Células Precursoras Eritroides/metabolismo
4.
Haematologica ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37981895

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a rare, generally aggressive myeloproliferative neoplasm affecting young children. It is characterized by granulomonocytic expansion, with monocytosis infiltrating peripheral tissues. JMML is initiated by mutations upregulating RAS signaling. Approximately 10% of cases remain without an identified driver event. Exome sequencing of 2 unrelated cases of familial JMML of unknown genetics and analysis of the French JMML cohort identified 11 patients with variants in SH2B3, encoding LNK, a negative regulator of the JAK-STAT pathway. All variants were absent from healthy population databases, and mutation spectrum was consistent with a loss of function of the LNK protein. A stoploss variant was shown to affect both protein synthesis and stability. The other variants were either truncating or missense, the latter affecting the SH2 domain that interacts with activated JAK. Of the 11 patients, 8 from 5 families inherited pathogenic bi-allelic SH2B3 germline variants from their unaffected heterozygous parents. These children represent half of the cases with no identified causal mutation in the French cohort. They displayed typical clinical and hematological JMML features with neonatal onset and marked thrombocytopenia. They were characterized by absence of additional genetic alterations and a hypomethylated DNA profile with fetal characteristics. All patients showed partial or complete spontaneous clinical resolution. However, progression to thrombocythemia and immunity-related pathologies may be of concern later in life. Bi-allelic SH2B3 germline mutations thus define a new condition predisposing to a JMML-like disorder, suggesting that the JAK pathway deregulation is capable of initiating JMML, and opening new therapeutic options.

5.
J Mol Diagn ; 25(8): 592-601, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302461

RESUMEN

Clinical genome-wide next-generation sequencing (NGS) has brought new challenges to genetic laboratories. The identification of numerous patient-specific variants that may require to be screened for on multiple other samples poses an issue when striving for time and cost-effectiveness. Here, we propose d-multiSeq, a straightforward method utilizing the advantages of droplet PCR for multiplexing combined with amplicon-based NGS. By comparing d-multiSeq with a standard multiplex amplicon-based NGS, it was shown that partitioning prevents the amplification competition seen when multiplexing and leads to a homogeneous representation of each target in the total read count for up to a 40-target multiplex without the need for prior adjustment. Variant allele frequency was reliably evaluated with a sensitivity of 97.6% for variant allele frequency up to 1%. The applicability of d-multiSeq was also tested on cell-free DNA with the successful amplification of an eight-target multiplex panel. Preliminary application of the technique to assess the clonal evolution in a childhood leukemia harboring high interpatient variability in its somatic variants is shown. d-multiSeq represents a turnkey solution for analyzing large sets of patient-specific variants on low DNA amounts and cell-free DNA.


Asunto(s)
Neoplasias , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Ácidos Nucleicos Libres de Células/análisis , Ácidos Nucleicos Libres de Células/genética , Humanos , Neoplasias/genética
6.
J Pediatr ; 259: 113451, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169337

RESUMEN

OBJECTIVE: To assess the associations between congenital abnormalities and pediatric malignancies and evaluate the potential underlying molecular basis by collecting information on pediatric patients with cancer and congenital abnormalities. STUDY DESIGN: Tumeur Et Développement is a national, prospective, and retrospective multicenter study recording data of children with cancer and congenital abnormalities. When feasible, blood and tumoral samples are collected for virtual biobanking. RESULTS: From June 2013 to December 2019, 679 associations between pediatric cancers and congenital abnormalities were recorded. The most represented cancers were central nervous system tumors (n = 139; 20%), leukemia and myelodysplastic syndromes (n = 123; 18.1%), and renal tumors (n = 101; 15%). Congenital abnormalities were not related to any known genetic disorder in 66.5% of cases. In this group, the most common anomaly was intellectual disability (22.3%), followed by musculoskeletal (14.2%) and genitourinary anomalies (12.4%). Intellectual disability was mostly associated with hematologic malignancies. Embryonic tumors (neuroblastoma, Wilms tumor, and rhabdomyosarcoma) were associated with consistent abnormalities, sometimes with a close anatomical neighborhood between the abnormality and the neoplasm. CONCLUSIONS: In the first Tumeur Et Développement analysis, 3 major themes have been identified: (1) germline mutations with or without known cancer predisposition, (2) postzygotic events responsible for genomic mosaicism, (3) coincidental associations. New pathways involved in cancer development need to be investigated to improve our understanding of childhood cancers.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Anomalías Congénitas , Discapacidad Intelectual , Niño , Humanos , Estudios de Cohortes , Estudios Prospectivos , Bancos de Muestras Biológicas , Anomalías Congénitas/genética
7.
JIMD Rep ; 64(2): 161-166, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873092

RESUMEN

Early treatment of neonatal diabetes with sulfonylureas has been proven to produce marked improvements of neurodevelopment, beside the demonstrated efficacy on glycemic control. Several barriers still prevent an early treatment in preterm babies including the limited availability of suitable galenic form of glibenclamide. We adopted oral glibenclamide suspension (Amglidia) for the early treatment of neonatal diabetes due to an homozygous variant of KCNJ11 gene c.10C>T [p.Arg4Cys] in an extremely preterm infant born at 26 + 2 weeks' of gestational age. After ~6 weeks of insulin treatment with a low glucose intake (4.5 g/kg/day), the infant was switched to Amglidia 6 mg/ml diluted in maternal milk, via nasogastric tube (0.2 mg/kg/day) progressively reduced to 0.01 mg/kg/day (after ~3 months). While on glibenclamide, the patient exhibited a mean daily growth of 11 g/kg/day. The treatment was suspended at month 6 of birth (weight 4.9 kg [5th-10th centile], M3 of c.a.) for normalization of glucose profile. During the treatment, the patient exhibited a stable glucose profile within the range of 4-8 mmol/L in the absence of hypo or hyperglycemic episodes with 2-3 blood glucose tests per day. The patient was diagnosed with retinopathy of prematurity Stade II in Zone II without plus disease at 32 weeks, with progressive regression and complete retinal vascularization at 6 months of birth. Amglidia could be regarded as the specific treatment for neonatal diabetes even in preterm babies due to its beneficial effect on the metabolic and neurodevelopmental side.

10.
Hum Genet ; 142(1): 125-138, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36138164

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting from biallelic alterations of the SMN1 gene: deletion, gene conversion or, in rare cases, intragenic variants. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene, which produces only low amounts of full-length (FL) mRNA. Here we describe the first example of retrotransposon insertion as a pathogenic SMN1 mutational event. The 50-year-old patient is clinically affected by SMA type III with a diagnostic odyssey spanning nearly 30 years. Despite a mild disease course, he carries a single SMN2 copy. Using Exome Sequencing and Sanger sequencing, we characterized a SINE-VNTR-Alu (SVA) type F retrotransposon inserted in SMN1 intron 7. Using RT-PCR and RNASeq experiments on lymphoblastoid cell lines, we documented the dramatic decrease of FL transcript production in the patient compared to subjects with the same SMN1 and SMN2 copy number, thus validating the pathogenicity of this SVA insertion. We described the mutant FL-SMN1-SVA transcript characterized by exon extension and showed that it is subject to degradation by nonsense-mediated mRNA decay. The stability of the SMN-SVA protein may explain the mild course of the disease. This observation exemplifies the role of retrotransposons in human genetic disorders.


Asunto(s)
Atrofia Muscular Espinal , Retroelementos , Masculino , Humanos , Persona de Mediana Edad , Retroelementos/genética , Atrofia Muscular Espinal/genética , Mutación , Exones , Línea Celular
11.
Br J Haematol ; 199(5): 739-743, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36111525

RESUMEN

In a patient with severe microcephaly, congenital bone marrow failure, growth retardation, and renal hypoplasia, we identified a likely pathogenic variant in NUF2 that impairs the cell's ability to properly complete mitosis. Interestingly, these clinical features as well as the observed cellular alterations are highly reminiscent of what is reported in Fanconi Anaemia supporting a unifying causal role of the variant in the disease. This case provides the first evidence that a kinetochore defect, previously associated with microcephaly, can be responsible for an inherited bone marrow failure syndrome, highlighting the unique pathological link between neurogenesis and haematopoiesis.


Asunto(s)
Anemia de Fanconi , Microcefalia , Humanos , Proteínas de Ciclo Celular , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Microcefalia/genética
12.
Hum Mol Genet ; 31(16): 2766-2778, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35348676

RESUMEN

We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here, we provide new data on the clinical spectrum and molecular diversity of this disorder and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge toward an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene and definitively establish a gain-of-function behavior as the mechanism of disease.


Asunto(s)
Anomalías Múltiples , Péptidos y Proteínas de Señalización Intracelular , Síndrome del Cabello Anágeno Suelto , Anomalías Múltiples/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Síndrome del Cabello Anágeno Suelto/genética , Fenotipo , Proteínas ras/genética , Proteínas ras/metabolismo
13.
J Pediatr Hematol Oncol ; 43(6): 232-235, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815886

RESUMEN

Thrombocytopenia-absent radius (TAR) syndrome is a rare inherited bone marrow failure syndrome not generally associated with acute leukemia. The authors report a case of T-cell acute lymphoblastic leukemia in an adult female individual newly diagnosed with TAR syndrome. A 347-kb microdeletion of chromosome 1q21.1 involving the RBM8A gene was detected within a gain of whole chromosome 1. Next-generation sequencing on fibroblasts confirmed germline heterozygous deletion of RBM8A but on the other allele, noncoding low-frequency regulatory single-nucleotide polymorphism of RBM8A (rs139428292; rs201779890) were not found. The tolerance of the treatment was unusual and mostly marked by a slow hematopoietic recovery leading to a 6-month delay at the beginning of the maintenance phase. Only 5 cases of acute leukemia were reported in patients with TAR syndrome in the literature: 4 acute myeloid leukemia and one B-cell acute lymphoblastic leukemia. This is the first report of T-cell acute lymphoid leukemia occurring in the context of TAR syndrome.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicaciones , Trombocitopenia/complicaciones , Deformidades Congénitas de las Extremidades Superiores/complicaciones , Adulto , Deleción Cromosómica , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/terapia , Femenino , Humanos , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas de Unión al ARN/genética , Radio (Anatomía) , Trombocitopenia/genética , Trombocitopenia/terapia , Deformidades Congénitas de las Extremidades Superiores/genética , Deformidades Congénitas de las Extremidades Superiores/terapia , Adulto Joven
14.
Eur J Hum Genet ; 29(1): 51-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32788663

RESUMEN

RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a disease-causing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.


Asunto(s)
Sistema Linfático/patología , Síndrome de Noonan/genética , Fenotipo , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Síndrome de Noonan/patología
15.
Eur J Hum Genet ; 29(3): 524-527, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33082526

RESUMEN

The RASopathies are a group of clinically and genetically heterogeneous developmental disorders caused by dysregulation of the RAS/MAPK signalling pathway. Variants in several components and regulators of this pathway have been identified as the pathogenetic cause. In 2015, missense variants in A2ML1 were reported in three unrelated families with clinical diagnosis of Noonan syndrome (NS) and a zebrafish model was presented showing heart and craniofacial defects similar to those caused by a NS-associated Shp2 variant. However, a causal role of A2ML1 variants in NS has not been confirmed since. Herein, we report on 15 individuals who underwent screening of RASopathy-associated genes and were found to carry rare variants in A2ML1, including variants previously proposed to be causative for NS. In cases where parental DNA was available, the respective A2ML1 variant was found to be inherited from an unaffected parent. Seven index patients carrying an A2ML1 variant presented with an alternate disease-causing genetic aberration. These findings underscore that current evidence is insufficient to support a causal relation between variants in A2ML1 and NS, questioning the inclusion of A2ML1 screening in diagnostic RASopathy testing.


Asunto(s)
Mutación , Síndrome de Noonan/genética , Fenotipo , alfa-Macroglobulinas/genética , Pruebas Genéticas/normas , Humanos , Síndrome de Noonan/patología
16.
BMC Musculoskelet Disord ; 21(1): 564, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825821

RESUMEN

BACKGROUND: Cherubism is a rare autosomal dominant genetic condition caused by mutations in the SH3BP2 gene. This disease is characterized by osteolysis of the jaws, with the bone replaced by soft tissue rich in fibroblasts and multinuclear giant cells. SH3BP2 is a ubiquitous adaptor protein yet the consequences of SH3BP2 mutation have so far been described as impacting only face. Cherubism mouse models have been generated and unlike human patients, the knock-in mice exhibit systemic bone loss together with a systemic inflammation. CASE PRESENTATION: In light of these observations, we decided to search for a systemic cherubism phenotype in a 6-year-old girl with an aggressive cherubism. We report here the first case of cherubism with systemic manifestations. Bone densitometry showed low overall bone density (total body Z-score = - 4.6 SD). Several markers of bone remodelling (CTx, BALP, P1NP) as well as inflammation (TNFα and IL-1) were elevated. A causative second-site mutation in other genes known to influence bone density was ruled out by sequencing a panel of such genes. CONCLUSIONS: If this systemic skeletal cherubism phenotype should be confirmed, it would simplify the treatment of severe cherubism patients and allay reservations about applying a systemic treatment such as those recently published (tacrolimus or imatinib) to a disease heretofore believed to be localised to the jaws.


Asunto(s)
Querubismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Densidad Ósea , Huesos/metabolismo , Querubismo/diagnóstico por imagen , Querubismo/genética , Humanos , Inflamación , Ratones
17.
Diabetes Care ; 43(6): 1191-1199, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32273272

RESUMEN

OBJECTIVE: Transient neonatal diabetes mellitus (TNDM) occurs during the 1st year of life and remits during childhood. We investigated glucose metabolism and socioeducational outcomes in adults. RESEARCH DESIGN AND METHODS: We included 27 participants with a history of TNDM currently with (n = 24) or without (n = 3) relapse of diabetes and 16 non-TNDM relatives known to be carriers of causal genetic defects and currently with (n = 9) or without (n = 7) diabetes. Insulin sensitivity and secretion were assessed by hyperinsulinemic-euglycemic clamp and arginine-stimulation testing in a subset of 8 TNDM participants and 7 relatives carrying genetic abnormalities, with and without diabetes, compared with 17 unrelated control subjects without diabetes. RESULTS: In TNDM participants, age at relapse correlated positively with age at puberty (P = 0.019). The mean insulin secretion rate and acute insulin response to arginine were significantly lower in TNDM participants and relatives of participants with diabetes than in control subjects (median 4.7 [interquartile range 3.7-5.7] vs. 13.4 [11.8-16.1] pmol/kg/min, P < 0.0001; and 84.4 [33.0-178.8] vs. 399.6 [222.9-514.9] µIU/mL, P = 0.0011), but were not different between participants without diabetes (12.7 [10.4-14.3] pmol/kg/min and 396.3 [303.3-559.3] µIU/mL, respectively) and control subjects. Socioeducational attainment was lower in TNDM participants than in the general population, regardless of diabetes duration. CONCLUSIONS: Relapse of diabetes occurred earlier in TNDM participants compared with relatives and was associated with puberty. Both groups had decreased educational attainment, and those with diabetes had lower insulin secretion capacity; however, there was no difference in insulin resistance in adulthood. These forms of diabetes should be included in maturity-onset diabetes of the young testing panels, and relatives of TNDM patients should be screened for underlying defects, as they may be treated with drugs other than insulin.


Asunto(s)
Diabetes Mellitus/congénito , Diabetes Mellitus/diagnóstico , Escolaridad , Enfermedades del Recién Nacido/diagnóstico , Resistencia a la Insulina , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Estudios Transversales , Diabetes Mellitus/epidemiología , Diabetes Mellitus/metabolismo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Recién Nacido , Enfermedades del Recién Nacido/epidemiología , Enfermedades del Recién Nacido/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/fisiología , Estudios Longitudinales , Masculino , Pronóstico , Factores Socioeconómicos , Adulto Joven
18.
Pediatr Dermatol ; 37(3): 541-544, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32157705

RESUMEN

We report the case of a child who presented with a giant melanocytic nevus with numerous satellite nevi at birth and developed hypophosphatemic rickets due to excessive secretion of the FGF23 hormone. A NRAS c.182A>G (Q61R) mutation was identified in the lesional skin. The functional outcome was favorable with medical treatment.


Asunto(s)
Nevo Pigmentado , Nevo , Raquitismo Hipofosfatémico , Neoplasias Cutáneas , Niño , Factor-23 de Crecimiento de Fibroblastos , Humanos , Recién Nacido , Mutación , Nevo Pigmentado/complicaciones , Nevo Pigmentado/genética , Raquitismo Hipofosfatémico/complicaciones , Raquitismo Hipofosfatémico/diagnóstico , Raquitismo Hipofosfatémico/genética
19.
Hum Mutat ; 41(2): 512-524, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31696992

RESUMEN

Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome-edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non-centrosomal gene casc5 -/- produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non-centrosomal pathways in PM.


Asunto(s)
Centrosoma/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Patrón de Herencia , Microcefalia/diagnóstico , Microcefalia/genética , Animales , Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Humanos , Mutación , Sistemas de Lectura Abierta , Fenotipo , Transducción de Señal , Secuenciación del Exoma , Pez Cebra
20.
Eur J Med Genet ; 62(8): 103704, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207318

RESUMEN

Whole exome sequencing undertaken in two siblings with delayed psychomotor development, absent speech, severe intellectual disability and postnatal microcephaly, with brain malformations consisting of cerebellar atrophy in the eldest affected and hypoplastic corpus callosum in the younger sister; revealed a homozygous intragenic deletion in VPS51, which encodes the vacuolar protein sorting-associated protein, one the four subunits of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes that promotes the fusion of endosome-derived vesicles with the trans-Golgi network (GARP) and recycling endosomes (EARP). This observation supports a pathogenic effect of VPS51 variants, which has only been reported previously once, in a single child with microcephaly. It confirms the key role of membrane trafficking in normal brain development and homeostasis.


Asunto(s)
Encéfalo/fisiopatología , Microcefalia/genética , Malformaciones del Sistema Nervioso/genética , Proteínas de Transporte Vesicular/genética , Encéfalo/diagnóstico por imagen , Niño , Endosomas/genética , Femenino , Humanos , Masculino , Microcefalia/diagnóstico por imagen , Microcefalia/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatología , Transporte de Proteínas/genética , Red trans-Golgi/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA