Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol ; 148(1): 5, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012509

RESUMEN

In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Progresión de la Enfermedad , Epigénesis Genética , Isocitrato Deshidrogenasa , Mutación , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Astrocitoma/genética , Astrocitoma/patología , Isocitrato Deshidrogenasa/genética , Mutación/genética , Epigénesis Genética/genética
2.
Sci Transl Med ; 16(732): eabo0049, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295184

RESUMEN

Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.


Asunto(s)
Encéfalo , Nanoestructuras , Humanos , Inmunohistoquímica , Anticuerpos Monoclonales , Epítopos , Formaldehído
3.
J Neuropathol Exp Neurol ; 82(10): 845-852, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37550258

RESUMEN

Homozygous deletion of CDKN2A/B is currently considered a molecular signature for grade 4 in IDH-mutant astrocytomas, irrespective of tumor histomorphology. The 2021 WHO Classification of CNS Tumors does not currently include grading recommendations for histologically lower-grade (grade 2-3) IDH-mutant astrocytoma with CDKN2A mutation or other CDKN2A alterations, and little is currently known about the prognostic implications of these alternative CDKN2A inactivating mechanisms. To address this, we evaluated a cohort of institutional and publicly available IDH-mutant astrocytomas, 15 with pathogenic mutations in CDKN2A, 47 with homozygous CDKN2A deletion, and 401 with retained/wildtype CDKN2A. The IDH-mutant astrocytomas with mutant and deleted CDKN2A had significantly higher overall copy number variation compared to those with retained/wildtype CDKN2A, consistent with more aggressive behavior. Astrocytoma patients with CDKN2A mutation had significantly worse progression-free (p = 0.0025) and overall survival (p < 0.0001) compared to grade-matched patients with wildtype CDKN2A, but statistically equivalent progression-free survival and overall survival outcomes to patients with CDKN2A deletion. No significant survival difference was identified between CDKN2A mutant cases with or without loss of the second allele. These findings suggest that CDKN2A mutation has a detrimental effect on survival in otherwise lower-grade IDH-mutant astrocytomas, similar to homozygous CDKN2A deletion, and should be considered for future grading schemes.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Humanos , Pronóstico , Neoplasias Encefálicas/patología , Homocigoto , Variaciones en el Número de Copia de ADN , Eliminación de Secuencia , Isocitrato Deshidrogenasa/genética , Astrocitoma/patología , Mutación/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194909, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682583

RESUMEN

Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Metilación de ADN , Epigénesis Genética , Potenciación a Largo Plazo/fisiología , Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética
5.
Front Oncol ; 12: 1014749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303838

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.

6.
Front Oncol ; 12: 914156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936750

RESUMEN

Integrins are heterodimeric transmembrane glycoproteins resulting from the non-covalent association of an α and ß chain. The major integrin receptor for collagen/laminin, α2ß1 is expressed on a wide variety of cell types and plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Integrin-triggered signaling pathways promote the invasion and survival of glioma cells by modifying the brain microenvironment. In this study, we investigated the association of a specific genetic polymorphism of integrin α2ß1 with the incidence of diffusely infiltrating astrocytoma and the progression of these tumors. Single-nucleotide polymorphism in intron 7 of the integrin ITGA2 gene was examined in 158 patients and 162 controls using polymerase chain reaction and restriction enzyme analysis. The ITGA2 genotype +/+ (with a BglII restriction site in both alleles) exhibited higher frequency in grade II astrocytoma compared to control (P = 0.02) whereas the genotype -/- (lacking the BglII site) correlated with the poorest survival rate (P = 0.04). In addition, in silico analyses of ITGA2 expression from low-grade gliomas (LGG, n = 515) and glioblastomas (GBM, n = 159) indicated that the higher expression of ITGA2 in LGG was associated with poor overall survival (P < 0.0001). However, the distribution of integrin ITGA2 BglII genotypes (+/+, +/-, -/-) was not significantly different between astrocytoma subgroups III and IV (P = 0.65, 0.24 and 0.33; 0.29, 0.48, 0.25, respectively) compared to control. These results suggest a narrow association between the presence of this SNP and indicate that further studies with larger samples are warranted to analyze the relation between tumor grade and overall survival, highlighting the importance of determining these polymorphisms for prognosis of astrocytomas.

7.
Acta Neuropathol Commun ; 10(1): 115, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978439

RESUMEN

Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.


Asunto(s)
Cromotripsis , Glioma , Adulto , Inestabilidad Cromosómica/genética , Glioma/genética , Humanos , Mutación/genética , Pronóstico
8.
Acta Neuropathol Commun ; 10(1): 32, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264242

RESUMEN

Diffusely infiltrating gliomas are among the most common central nervous system tumors in adults. Over the past decade, the subcategorization of these tumors has changed to include both traditional histologic features and more recently identified molecular factors. However, one molecular feature that has yet to be integrated is the presence/absence of chromosomal instability (CIN). Herein, we use global methylation profiling to evaluate a reference cohort of IDH-mutant astrocytomas with and without prior evidence of CIN (n = 42), and apply the resulting methylation-based characteristics to a larger test cohort of publicly-available IDH-mutant astrocytomas (n = 245). We demonstrate that IDH-mutant astrocytomas with evidence of CIN cluster separately from their chromosomally-stable counterparts. CIN cases were associated with higher initial histologic grade, altered expression patterns of genes related to CIN in other cancers, elevated initial total copy number burden, and significantly worse progression-free and overall survival. In addition, in a grade-for-grade analysis, patients with CIN-positive WHO grade 2 and 3 tumors had significantly worse survival. These results suggest that global methylation profiling can be used to discriminate between chromosomally stable and unstable IDH-mutant astrocytomas, and may therefore provide a reliable and cost-effective method for identifying gliomas with chromosomal instability and resultant poor clinical outcome.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Astrocitoma/patología , Neoplasias Encefálicas/patología , Inestabilidad Cromosómica/genética , Metilación de ADN , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación/genética
9.
Anticancer Res ; 42(2): 723-730, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35093870

RESUMEN

BACKGROUND/AIM: Over-expression of both P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) has been associated with multidrug-resistance in glioblastoma (GBM). Though previously studied broad-spectrum inhibitors of drug efflux pumps have failed to progress in clinical studies due to in vivo toxicity, research into clinically viable targeted inhibitors is needed. This study evaluated the effects of Ko143, a non-toxic analog of fumitremorgin C, on temozolomide (TMZ) efficacy in resistant glioblastoma stem cells. MATERIALS AND METHODS: We used ATP-Glo assay to determine cell viabilities and flow cytometry to perform cell cycle analysis. Comparative gene expression was analysed through RT-qPCR. RESULTS: TMZ IC50 decreased 41.07% (p<0.01) in the resistant phenotype when delivered in combination with Ko143. Additionally, the TMZ-resistant phenotype (GBM146) displayed 44-fold greater P-gp expression than the TMZ-sensitive phenotype (GBM9) (p<0.01), yet a 0.6-fold lower BCRP expression. Ko143 potentiates TMZ efficacy and likely inhibits P-glycoprotein more potently than previously indicated. CONCLUSION: Further development of non-toxic, targeted inhibitors of drug efflux pumps for use in combinatorial chemotherapy may improve glioblastoma patient prognosis.


Asunto(s)
Dicetopiperazinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Temozolomida/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética
10.
Neuro Oncol ; 24(8): 1230-1242, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34984467

RESUMEN

BACKGROUND: Tumor invasion, a hallmark of malignant gliomas, involves reorganization of cell polarity and changes in the expression and distribution of scaffolding proteins associated with polarity complexes. The scaffolding proteins of the DLG family are usually downregulated in invasive tumors and regarded as tumor suppressors. Despite their important role in regulating neurodevelopmental signaling, the expression and functions of DLG proteins have remained almost entirely unexplored in malignant gliomas. METHODS: Western blot, immunohistochemistry, and analysis of gene expression were used to quantify DLG members in glioma specimens and cancer datasets. Over-expression and knockdown of DLG5, the highest-expressed DLG member in glioblastoma, were used to investigate its effects on tumor stem cells and tumor growth. qRT-PCR, Western blotting, and co-precipitation assays were used to investigate DLG5 signaling mechanisms. RESULTS: DLG5 was upregulated in malignant gliomas compared to other solid tumors, being the predominant DLG member in all glioblastoma molecular subtypes. DLG5 promoted glioblastoma stem cell invasion, viability, and self-renewal. Knockdown of this protein in vivo disrupted tumor formation and extended survival. At the molecular level, DLG5 regulated Sonic Hedgehog (Shh) signaling, making DLG5-deficient cells insensitive to Shh ligand. Loss of DLG5 increased the proteasomal degradation of Gli1, underlying the loss of Shh signaling and tumor stem cell sensitization. CONCLUSIONS: The high expression and pro-tumoral functions of DLG5 in glioblastoma, including its dominant regulation of Shh signaling in tumor stem cells, reveal a novel role for this protein that is strikingly different from its proposed tumor-suppressor role in other solid tumors.


Asunto(s)
Glioblastoma , Glioma , Proteínas Hedgehog , Proteínas de la Membrana , Proteínas Supresoras de Tumor , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioma/patología , Proteínas Hedgehog/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
11.
Biomedicines ; 11(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36672576

RESUMEN

Pediatric high-grade glioma (pHGG) is one of the most aggressive brain tumors. Treatment includes surgery, radiotherapy, chemotherapy, or combination therapy in children older than 3−5 years of age. These devastating tumors are influenced by the hypoxic microenvironment that coordinatively increases the expression of carbonic anhydrases (CA9 and CA12) that are involved in pH regulation, metabolism, cell invasion, and resistance to therapy. The synthetic sulphonamide Indisulam is a potent inhibitor of CAs. The aim of this study was to evaluate the effects of Indisulam on CA9 and CA12 enzymes in pHGG cell lines. Our results indicated that, under hypoxia, the gene and protein expression of CA9 and CA12 are increased in pHGG cells. The functional effects of Indisulam on cell proliferation, clonogenic capacity, and apoptosis were measured in vitro. CA9 and CA12 gene and protein expression were analyzed by RT-PCR and western blot. The treatment with Indisulam significantly reduced cell proliferation (dose-time-dependent) and clonogenic capacity (p < 0.05) and potentiated the effect of apoptosis (p < 0.01). Indisulam promoted an imbalance in the anti-apoptotic BCL2 and pro-apoptotic BAX protein expression. Our results demonstrate that Indisulam contributes to apoptosis via imbalance of apoptotic proteins (BAX/BCL2) and suggests a potential to overcome chemotherapy resistance caused by the regulation these proteins.

12.
Acta Neuropathol Commun ; 9(1): 120, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193272

RESUMEN

Glioblastoma (GBM) is the most common malignant primary central nervous system (CNS) neoplasm in adults, and has an almost universally poor prognosis. Recently, an emphasis on genetic and epigenetic profiling has revealed a number of molecular features useful in the diagnostic and prognostic classification of GBM, advancing our understanding of the underlying features that make these tumors so aggressive and providing the rationale for the creation of better targeted therapeutics. One such method, DNA methylation profiling, has recently emerged as an important technique for the classification of CNS tumors, with diagnostic accuracy in some cases surpassing traditional methods. However, how DNA methylation profiles change with the course of the disease remains less understood. Here, we present a case of a 30-year-old male with primary IDH-mutant GBM with widespread recurrence and death two years later. Using unsupervised hierarchical clustering of methylation probes, we created a phylogenetic map to trace the tumor path as it spread from the initial biopsy site throughout the right hemisphere, across the corpus callosum to the contralateral hemisphere, and into the brainstem. We identified molecular divergence between the right and left hemisphere GBM samples marked by distinct copy number profile alterations, alterations in specific methylation sites, and regional loss of MGMT promoter methylation, providing a potential mechanism for treatment resistance in this case. In summary, this case both highlights the molecular diversity in GBM, and illustrates a novel use for methylation profiling in establishing a phylogenetic profile to allow for spatial mapping of tumor progression.


Asunto(s)
Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica/métodos , Glioblastoma/genética , Glioblastoma/patología , Adulto , Neoplasias Encefálicas/patología , Metilación de ADN , Progresión de la Enfermedad , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Mutación
13.
Mol Neurobiol ; 58(9): 4520-4534, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34085182

RESUMEN

Glioblastomas (GBMs), the most common and lethal primary brain tumor, show inherent infiltrative nature and high molecular heterogeneity that make complete surgical resection unfeasible and unresponsive to conventional adjuvant therapy. Due to their fast growth rate even under hypoxic and acidic conditions, GBM cells can conserve the intracellular pH at physiological range by overexpressing membrane-bound carbonic anhydrases (CAs). The synthetic sulfonamide E7070 is a potent inhibitor of CAs that harbors putative anticancer properties; however, this drug has still not been tested in GBMs. The present study aimed to evaluate the effects of E7070 on CA9 and CA12 enzymes in GBM cells as well as in the tumor cell growth, migration, invasion, and resistance to radiotherapy and chemotherapy. We found that E7070 treatment significantly reduced tumor cell growth and increased radio- and chemotherapy efficacy against GBM cells under hypoxia. Our data suggests that E7070 has therapeutic potential as a radio-chemo-sensitizing in drug-resistant GBMs, representing an attractive strategy to improve the adjuvant therapy. We showed that CA9 and CA12 represent potentially valuable therapeutic targets that should be further investigated as useful diagnostic and prognostic biomarkers for GBM tailored therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Inhibidores de Anhidrasa Carbónica/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/patología , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos
14.
Adv Ther (Weinh) ; 4(4)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33997269

RESUMEN

Glioblastoma multiforme (GBM) is the most common and deadliest form of brain tumor and remains amongst the most difficult cancers to treat. Brevican (Bcan), a central nervous system (CNS)-specific extracellular matrix protein, is upregulated in high-grade glioma cells, including GBM. A Bcan isoform lacking most glycosylation, dg-Bcan, is found only in GBM tissues. Here, dg-Bcan is explored as a molecular target for GBM. In this study, we screened a d-peptide library to identify a small 8-amino acid dg-Bcan-Targeting Peptide (BTP) candidate, called BTP-7 that binds dg-Bcan with high affinity and specificity. BTP-7 is preferentially internalized by dg-Bcan-expressing patient-derived GBM cells. To demonstrate GBM targeting, we radiolabeled BTP-7 with 18F, a radioisotope of fluorine, and found increased radiotracer accumulation in intracranial GBM established in mice using positron emission tomography (PET) imaging. dg-Bcan is an attractive molecular target for GBM, and BTP-7 represents a promising lead candidate for further development into novel imaging agents and targeted therapeutics.

15.
J Neuropathol Exp Neurol ; 80(4): 354-365, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33755138

RESUMEN

Chromosomal instability due to mutations in genes guarding the stability of the genome is a well-known mechanism underlying tumorigenesis and malignant progression in numerous cancers. The effect of this process in gliomas is mostly unknown with relatively little research examining the effects of chromosomal instability on patient outcome and therapeutic efficacy, although studies have shown that overall/total copy number variation (CNV) is elevated in higher histologic grades and in cases with more rapid progression and shorter patient survival. Herein, we examine a 70-gene mRNA expression signature (CIN70), which has been previously shown to correlate tightly with chromosomal instability, in 2 independent cohorts of IDH-mutant astrocytomas (total n = 241), IDH-wildtype astrocytomas (n = 228), and oligodendrogliomas (n = 128). Our results show that CIN70 expression levels correlate with total CNV, as well as higher grade, progression-free survival, and overall survival in both IDH-mutant and IDH-wildtype astrocytomas. In oligodendrogliomas, these mRNA signatures correlate with total CNV but not consistently with clinical outcome. These data suggest that chromosomal instability is an underlying factor in aggressive behavior and progression of a subset of diffuse astrocytomas. In addition, chromosomal instability may in part explain the poor response of diffuse gliomas to treatment and may serve as a future therapeutic target.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Inestabilidad Cromosómica/genética , Variaciones en el Número de Copia de ADN/genética , Mutación/genética , Oligodendroglioma/genética , Adulto , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Estudios de Cohortes , Bases de Datos Factuales/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oligodendroglioma/mortalidad , Oligodendroglioma/patología , Tasa de Supervivencia/tendencias
16.
J Neuropathol Exp Neurol ; 79(10): 1044-1053, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32743660

RESUMEN

Myxopapillary ependymoma (MPE) is a relatively common neoplasm arising primarily in the filum terminale/lumbosacral region of the spinal cord. It is designated as a grade I tumor in the most recent WHO Classification of Tumours of the CNS, although aggressive clinical behavior can be observed, especially in cases arising in an extradural location. Anaplastic transformation in MPE is exceedingly rare with <20 examples reported in the English literature, and consensus on diagnostic features and definitive grading remain to be determined. Here, we present 2 cases of recurrent MPE with anaplastic features, both of which had histology consistent with conventional MPE as well as areas with significant atypia, frequent mitotic figures, elevated Ki-67 proliferation indices (>10%-50%), necrosis, and focal vascular proliferation. Targeted next-generation sequencing panels revealed no definitive pathogenic mutations or fusion proteins in either case. Copy number profiling, methylation profiling, and t-Distributed Stochastic Neighbor Embedding were performed to investigate the molecular characteristics of these tumors. To the best of our knowledge, these are the first reported cases of MPE with anaplastic features with methylation profiling data. In addition, we review the literature and discuss common histologic and molecular findings associated with anaplastic features in MPE.


Asunto(s)
Ependimoma/patología , Neoplasias de la Médula Espinal/patología , Anciano , Humanos , Masculino , Adulto Joven
17.
J Neuropathol Exp Neurol ; 79(8): 843-854, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32647886

RESUMEN

IDH-wildtype glioblastoma is a relatively common malignant brain tumor in adults. These patients generally have dismal prognoses, although outliers with long survival have been noted in the literature. Recently, it has been reported that many histologically lower-grade IDH-wildtype astrocytomas have a similar clinical outcome to grade IV tumors, suggesting they may represent early or undersampled glioblastomas. cIMPACT-NOW 3 guidelines now recommend upgrading IDH-wildtype astrocytomas with certain molecular criteria (EGFR amplifications, chromosome 7 gain/10 loss, and/or TERT promoter mutations), establishing the concept of a "molecular grade IV" astrocytoma. In this report, we apply these cIMPACT-NOW 3 criteria to 2 independent glioblastoma cohorts, totaling 393 public database and institutional glioblastoma cases: 89 cases without any of the cIMPACT-NOW 3 criteria (GBM-C0) and 304 cases with one or more criteria (GBM-C1-3). In the GBM-C0 groups, there was a trend toward longer recurrence-free survival (median 12-17 vs 6-10 months), significantly longer overall survival (median 32-41 vs 15-18 months), younger age at initial diagnosis, and lower overall mutation burden compared to the GBM-C1-3 cohorts. These data suggest that while histologic features may not be ideal indicators of patient survival in IDH-wildtype astrocytomas, these 3 molecular features may also be important prognostic factors in IDH-wildtype glioblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Glioblastoma/genética , Glioblastoma/mortalidad , Adulto , Biomarcadores de Tumor/genética , Femenino , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Pronóstico
18.
J Biol Chem ; 295(4): 955-968, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31822561

RESUMEN

Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.


Asunto(s)
Matriz Extracelular/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Agrecanos/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacología , Matriz Extracelular/efectos de los fármacos , Heterocigoto , Ácido Hialurónico/farmacología , Proteínas Inmovilizadas/metabolismo , Ratones Noqueados , Modelos Biológicos , Neuronas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Tenascina/metabolismo
19.
Acta Neuropathol Commun ; 7(1): 92, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31177992

RESUMEN

Since the discovery that IDH1/2 mutations confer a significantly better prognosis in astrocytomas, much work has been done to identify other molecular signatures to help further stratify lower-grade astrocytomas and glioblastomas, with the goal of accurately predicting clinical outcome and identifying potentially targetable mutations. In the present study, we subclassify 135 astrocytomas (67 IDH-wildtype and 68 IDH-mutant) from The Cancer Genome Atlas dataset (TCGA) on the basis of grade, IDH-status, and the previously established prognostic factors, CDK4 amplification and CDKN2A/B deletion, within the IDH-mutant groups. We analyzed these groups for total copy number variation (CNV), total mutation burden, chromothripsis, specific mutations, and amplifications/deletions of specific genes/chromosomal regions. Herein, we demonstrate that across all of these tumor groups, total CNV level is a relatively consistent prognostic factor. We also identified a trend towards increased levels of chromothripsis in tumors with lower progression-free survival (PFS) and overall survival (OS) intervals. While no significant differences were identified in overall mutation load, we did identify a significantly higher number of cases with mutations in genes with functions related to maintaining genomic stability in groups with higher mean CNV and worse PFS and OS intervals, particularly in the IDH-mutant groups. Our data further support the case for total CNV level as a potential prognostic factor in astrocytomas, and suggest mutations in genes responsible for overall genomic instability as a possible underlying mechanism for some astrocytomas with poor clinical outcome.


Asunto(s)
Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Variaciones en el Número de Copia de ADN/genética , Adulto , Astrocitoma/mortalidad , Neoplasias Encefálicas/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia/tendencias
20.
Virology ; 513: 129-135, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069622

RESUMEN

Herpes simplex virus 2 (HSV-2) is the leading cause of genital herpes and increases the risk of HIV infection, but there is no effective vaccine. A replication-defective HSV-2 mutant virus, dl5-29, is effective in animal models and has been in a phase I trial. Previous studies have shown that dl5-29 gives higher antibody responses and better protection when inoculated intramuscularly (IM) as compared with subcutaneously (SC). However, the basis for this effect has not been defined. We confirmed that IM inoculation of dl5-29 is more immunogenic and provides better protection than SC inoculation. IM inoculation of HSV-2 strains produced higher levels of a luciferase transgene than SC inoculation, as measured by intravital bioluminescence imaging. Intramuscular immunization also showed better protection against infection with a highly pathogenic African HSV-2, demonstrating that this single vaccine can be efficacious against HSV-2 strains from different geographic regions.


Asunto(s)
Herpes Genital/prevención & control , Herpesvirus Humano 2/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Vacunas contra Herpesvirus/inmunología , Animales , Modelos Animales de Enfermedad , Inyecciones Intramusculares , Ratones Endogámicos BALB C , Resultado del Tratamiento , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...