Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289076

RESUMEN

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Asunto(s)
Amicacina , Neumonía , Humanos , Animales , Ratones , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmón , Neumonía/tratamiento farmacológico , Peso Corporal
2.
Antimicrob Agents Chemother ; 67(5): e0019723, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37022153

RESUMEN

Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.


Asunto(s)
Antibacterianos , Polimixina B , Ratones , Animales , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmón/microbiología , Disponibilidad Biológica , Plasma
3.
Antimicrob Agents Chemother ; 65(8): e0185320, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097487

RESUMEN

Dose range studies for polymyxin B (PMB) regimens of 0.75 to 12 mg/kg given every 12 h (q12h) were evaluated for bacterial killing and resistance prevention against an AmpC-overexpressing Pseudomonas aeruginosa and a blaKPC-3-harboring Klebsiella pneumoniae in 10-day in vitro hollow-fiber models. An exposure-response was observed. But all regimens failed due to regrowth. Lower-dose regimens amplified isolates that expressed transient, lower-level adaptive resistance to PMB (MICs ≤ 4 mg/liter). Higher PMB dosages amplified isolates that expressed this resistance mechanism, a higher-MIC "moderately stable" adaptive resistance, and a higher-MIC stable resistance to PMB. Failure of the highest dose regimens was solely due to subpopulations that expressed the two higher-level resistances. Total and bioactive PMB concentrations in broth declined below targeted PK profiles within hours of treatment initiation and prior to bacterial regrowth. With treatment failure, the total PMB measured in bacteria was substantially higher than in broth. But the bioactive PMB in broth and bacteria were low to nondetectable. Together, these findings suggest a sequence of events for treatment failure of the clinical regimen. First, PMB concentrations in broth are diluted as PMB binds to bacteria, resulting in total and bioactive PMB in broth that is lower than targeted. Bacterial regrowth and treatment failure follow, with emergence of subpopulations that express transient lower-level adaptive resistance to PMB and possibly higher-level adaptive and stable resistances. Higher-dose PMB regimens can prevent the emergence of transient lower-level adaptive resistance, but they do not prevent treatment failure due to isolates that express higher-level resistance mechanisms.


Asunto(s)
Antibacterianos , Polimixina B , Antibacterianos/farmacología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología , Pseudomonas aeruginosa/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-33782013

RESUMEN

Ceftazidime (CAZ)-avibactam (AVI) is a ß-lactam/ß-lactamase inhibitor combination with activity against type A and type C ß-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) ß-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.


Asunto(s)
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Ceftazidima/farmacología , Cefalosporinasa , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , Pseudomonas , Pseudomonas aeruginosa/genética
5.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32958720

RESUMEN

Preclinical animal models of infection are employed to develop new agents but also to screen among molecules to rank them. There are often major differences between human pharmacokinetic (PK) profiles and those developed by animal models of infection, and these may lead to substantial differences in efficacy relative to that seen in humans. Linezolid is a repurposed agent employed to great effect for therapy of Mycobacterium tuberculosis In this study, we used the hollow-fiber infection model (HFIM) to evaluate the impact of different pharmacokinetic profiles of mice and nonhuman primates (NHP) versus humans on bacterial cell kill as well as resistance suppression. We examined both plasma and epithelial lining fluid (ELF) profiles. We examined simulated exposures equivalent to 600 mg and 900 mg daily of linezolid in humans. For both plasma and ELF exposures, the murine PK profile provided estimates of effect that were biased low relative to human and NHP PK profiles. Mathematical modeling identified a linkage between minimum concentrations (Cmin) and bacterial kill and peak concentrations (Cpeak) and resistance suppression, with the latter being supported by a prospective validation study. Finding new agents with novel mechanisms of action against M. tuberculosis is difficult. It would be a tragedy to discard a new agent because of a biased estimate of effect in a preclinical animal system. The HFIM provides a system to benchmark evaluation of new compounds in preclinical animal model systems against human PK effects (species scale-up estimates of PK), to safeguard against unwarranted rejection of promising new agents.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis , Animales , Antituberculosos/farmacología , Ratones , Modelos Animales , Estudios Prospectivos
6.
Artículo en Inglés | MEDLINE | ID: mdl-30249700

RESUMEN

Treating high-density bacterial infections is a challenging clinical problem. We have a paucity of new agents that can address this problem. Pseudomonas aeruginosa is a particularly difficult pathogen to treat effectively because of the plethora of resistance mechanisms it carries. Fosfomycin is an agent discovered circa 40 years ago. Recently, it has been resurrected in the United States and studied for intravenous therapy. We hypothesized that, to maximize its utility, it would require combination chemotherapy when used in a clinical circumstance in high-bacterial-burden infections. We chose to examine the combination of meropenem plus fosfomycin. These agents were studied in the hollow-fiber infection model. We utilized a fully factorial study design, looking at 2 doses of meropenem alone (1 and 2 g 8-hourly) and two doses of fosfomycin alone (6 and 8 g 8-hourly), as well as all possible combinations plus a no-treatment control. We used a high-dimensional model of 5 inhomogeneous differential equations with 5 system outputs to analyze all data simultaneously. Combination therapy outperformed all monotherapy regimens, with all combinations driving >6 log10 CFU/ml of bacterial killing. Combination therapy was able to counterselect resistance emergence (meropenem mutants being killed by the combination, as well as fosfomycin mutants being killed by the combination) in all regimens studied. The analysis demonstrated that the combination was significantly synergistic for bacterial cell killing and resistance suppression. Meropenem plus fosfomycin is a promising combination for therapy of high-burden Pseudomonas aeruginosa infections and requires further study.


Asunto(s)
Antibacterianos/farmacología , Medios de Cultivo/farmacología , Fosfomicina/farmacología , Meropenem/farmacología , Modelos Biológicos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacocinética , Recuento de Colonia Microbiana , Medios de Cultivo/química , Cámaras de Difusión de Cultivos , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Cálculo de Dosificación de Drogas , Farmacorresistencia Bacteriana/genética , Sinergismo Farmacológico , Análisis Factorial , Fosfomicina/farmacocinética , Humanos , Meropenem/farmacocinética , Redes y Vías Metabólicas , Pruebas de Sensibilidad Microbiana , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-29967017

RESUMEN

Zika virus (ZIKV) infection is associated with serious, long-term neurological manifestations. There are currently no approved therapies for the treatment or prevention of ZIKV infection. Favipiravir (FAV) is a viral polymerase inhibitor with broad-spectrum activity. Our prior studies used static FAV concentrations and demonstrated promising activity. However, the anti-ZIKV activity of dynamic FAV concentrations has never been evaluated in a human cell line. Here we employed the hollow-fiber infection model (HFIM) to simulate the human pharmacokinetic (PK) profiles associated with the clinically utilized FAV dosage regimens against influenza and Ebola viruses and assessed the viral burden profiles. Clinically achievable FAV concentrations inhibited ZIKV replication in HUH-7 cells in a dose-dependent fashion (50% effective concentration = 236.5 µM). The viral burden profiles under dynamic FAV concentrations were predicted by use of a mechanism-based mathematical model (MBM) and subsequently successfully validated in the HFIM. This validated, translational MBM can now be used to predict the anti-ZIKV activity of other FAV dosage regimens in the presence of between-patient variability in pharmacokinetics. This approach can be extended to rationally optimize FAV combination dosage regimens which hold promise to treat ZIKV infections in nonpregnant patients.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Pirazinas/farmacología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Amidas/farmacocinética , Animales , Antivirales/farmacocinética , Línea Celular , Chlorocebus aethiops , Humanos , Modelos Teóricos , Pirazinas/farmacocinética , Células Vero , Carga Viral/efectos de los fármacos , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
8.
Front Pharmacol ; 9: 403, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765318

RESUMEN

Background: Emergence of Human epidermal growth factor receptor 2 (HER2) therapy resistance in HER2-positive (HER2+) breast cancer (BC) poses a major clinical challenge. Mechanisms of resistance include the over-activation of the PI3K/mTOR and Src pathways. This work aims to investigate a novel combination therapy that employs paclitaxel (PAC), a mitotic inhibitor, with everolimus (EVE), an mTOR inhibitor, and dasatinib (DAS), an Src kinase inhibitor, as a modality to overcome resistance. Methods: Static (two dimensional, 2D) and three-dimensional dynamic (3DD) cell culture studies were conducted using JIMT-1 cells, a HER2+ BC cell line refractory to HER2 therapies. Cell viability and caspase-3 expression were examined after JIMT-1 cell exposure to agents as monotherapy or in combination using a 2D setting. A pharmacokinetic/pharmacodynamic (PK/PD) combination study with PAC+DAS+EVE was conducted over 3 weeks in a 3DD setting. PAC was administered into the system via a 3 h infusion followed by the addition of a continuous infusion of EVE+DAS 24 h post-PAC dosing. Cell counts and caspase-3 expression were quantified every 2 days. A semi-mechanistic PK/PD model was developed using the 2D data and scaled up to capture the 3DD data. The final model integrated active caspase-3 as a biomarker to bridge between drug exposures and cancer cell dynamics. Model fittings were performed using Monolix software. Results: The triple combination significantly induced caspase-3 activity in the 2D cell culture setting. In the 3DD cell culture setting, sequential dosing of PAC then EVE+DAS showed a 5-fold increase in caspase-3 activity and 8.5-fold decrease in the total cell number compared to the control. The semi-mechanistic PK/PD models fit the data well, capturing the time-course profiles of drug concentrations, caspase-3 expression, and cell counts in the 2D and 3DD settings. Conclusion: A novel, sequential triple combination therapeutic regimen was successfully evaluated in both 2D and 3DD in vitro cell culture systems. The efficacy of this combination at inhibiting the cellular proliferation and re-growth of HER2/mTOR resistant cell line, JIMT-1, is demonstrated. A biomarker-linked PK/PD model successfully captured all time-course data. The latter can be used as a modeling platform for a direct translation from 3DD in vitro settings to the clinic.

10.
Artículo en Inglés | MEDLINE | ID: mdl-29581114

RESUMEN

Fosfomycin is the only expoxide antimicrobial and is currently under development in the United States as an intravenously administered product. We were interested in identifying the exposure indices most closely linked to its ability to kill bacterial cells and to suppress amplification of less susceptible subpopulations. We employed the hollow fiber infection model for this investigation and studied wild-type strain Pseudomonas aeruginosa PAO1. Because of anticipated rapid resistance emergence, we shortened the study duration to 24 h but sampled the system more intensively. Doses of 12 and 18 g/day and schedules of daily administration, administration every 8 h, and administration by continuous infusion for each daily dose were studied. We measured fosfomycin concentrations (by liquid chromatography-tandem mass spectrometry), the total bacterial burden, and the burden of less susceptible isolates. We applied a mathematical model to all the data simultaneously. There was a rapid emergence of resistance with all doses and schedules. Prior to resistance emergence, an initial kill of 2 to 3 log10(CFU/ml) was observed. The model demonstrated that the area under the concentration-time curve/MIC ratio was linked to total bacterial kill, while the time that the concentration remained above the MIC (or, equivalently, the minimum concentration/MIC ratio) was linked to resistance suppression. These findings were also seen in other investigations with Enterobacteriaceae (in vitro systems) and P. aeruginosa (murine system). We conclude that for serious infections with high bacterial burdens, fosfomycin may be of value as a new therapeutic and may be optimized by administering the agent as a continuous or prolonged infusion or by use of a short dosing interval. For indications such as ventilator-associated bacterial pneumonia, it may be prudent to administer fosfomycin as part of a combination regimen.


Asunto(s)
Antibacterianos/farmacología , Fosfomicina/farmacología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
11.
Artículo en Inglés | MEDLINE | ID: mdl-29038277

RESUMEN

Ventilator-associated bacterial pneumonia (VABP) is a difficult therapeutic problem. Considerable controversy exists regarding the optimal chemotherapy for this entity. The recent guidelines of the Infectious Diseases Society of America and the American Thoracic Society recommend a 7-day therapeutic course for VABP based on the balance of no negative impact on all-cause mortality, less resistance emergence, and fewer antibiotic treatment days, counterbalanced with a higher relapse rate for patients whose pathogen is a nonfermenter. The bacterial burden causing an infection has a substantial impact on treatment outcome and resistance selection. We describe the baseline bronchoalveolar lavage (BAL) fluid burden of organisms in suspected VABP patients screened for inclusion in a clinical trial. We measured the urea concentrations in plasma and BAL fluid to provide an index of the dilution of the bacterial and drug concentrations in the lung epithelial lining fluid introduced by the BAL procedure. We were then able to calculate the true bacterial burden as the diluted colony count times the dilution factor. The median dilution factor was 28.7, with the interquartile range (IQR) being 11.9 to 53.2. Median dilution factor-corrected colony counts were 6.18 log10(CFU/ml) [IQR, 5.43 to 6.46 log10(CFU/ml)]. In a subset of patients, repeat BAL on day 5 showed a good stability of the dilution factor. We previously showed that large bacterial burdens reduce or stop bacterial killing by granulocytes. (This study has been registered at ClinicalTrials.gov under registration no. NCT01570192.).


Asunto(s)
Técnicas Bacteriológicas/métodos , Líquido del Lavado Bronquioalveolar/microbiología , Neumonía Bacteriana/microbiología , Neumonía Asociada al Ventilador/microbiología , Urea/análisis , Carga Bacteriana , Humanos , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Asociada al Ventilador/tratamiento farmacológico , Urea/sangre
12.
Bioorg Med Chem Lett ; 24(1): 262-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24332089

RESUMEN

A scaffold-hop program seeking full agonists of the neurotensin-1 (NTR1) receptor identified the probe molecule ML301 (1) and associated analogs, including its naphthyl analog (14) which exhibited similar properties. Compound 1 showed full agonist behavior (79-93%) with an EC50 of 2.0-4.1µM against NTR1. Compound 1 also showed good activity in a Ca mobilization FLIPR assay (93% efficacy at 298nM), consistent with it functioning via the Gq coupled pathway, and good selectivity relative to NTR2 and GPR35. In further profiling, 1 showed low potential for promiscuity and good overall pharmacological data. This report describes the discovery, synthesis, and SAR of 1 and associated analogs. Initial in vitro pharmacologic characterization is also presented.


Asunto(s)
Imidazoles/farmacología , Receptores de Neurotensina/agonistas , Animales , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Ratones , Estructura Molecular , Relación Estructura-Actividad
13.
ACS Med Chem Lett ; 4(9): 846-851, 2013 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24611085

RESUMEN

The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a non-peptidic ß-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)- piperazin-1-yl)quinazoline, 32 (ML314), exhibits full agonist behavior against NTR1 (EC50 = 2.0 µM) in the primary assay and selectivity against NTR2. The effect of 32 is blocked by the NTR1 antagonist SR142948A in a dose dependent manner. Unlike peptide based NTR1 agonists, compound 32 has no significant response in a Ca2+ mobilization assay and is thus a biased agonist that activates the ß-arrestin pathway rather than the traditional G q coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound 32 displays good brain penetration in rodents, and studies examining its in vivo properties are underway.

14.
Bioorg Med Chem Lett ; 22(21): 6656-60, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23010269

RESUMEN

The recently discovered apelin/APJ system has emerged as a critical mediator of cardiovascular homeostasis and is associated with the pathogenesis of cardiovascular disease. A role for apelin/APJ in energy metabolism and gastrointestinal function has also recently emerged. We disclose the discovery and characterization of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221), a potent APJ functional antagonist in cell-based assays that is >37-fold selective over the closely related angiotensin II type 1 (AT1) receptor. ML221 was derived from an HTS of the ~330,600 compound MLSMR collection. This antagonist showed no significant binding activity against 29 other GPCRs, except to the κ-opioid and benzodiazepinone receptors (<50/<70%I at 10 µM). The synthetic methodology, development of structure-activity relationship (SAR), and initial in vitro pharmacologic characterization are also presented.


Asunto(s)
Descubrimiento de Drogas , Nitrobenzoatos/síntesis química , Piranos/síntesis química , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Receptores de Apelina , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Nitrobenzoatos/química , Nitrobenzoatos/farmacología , Unión Proteica/efectos de los fármacos , Piranos/química , Piranos/farmacología , Relación Estructura-Actividad
15.
J Med Chem ; 55(16): 7262-72, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22813531

RESUMEN

A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 µM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.


Asunto(s)
Antimaláricos/síntesis química , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Complejos Multienzimáticos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Tiazinas/síntesis química , Antimaláricos/química , Antimaláricos/farmacología , Estabilidad de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Tiazinas/química , Tiazinas/farmacología
16.
ACS Chem Neurosci ; 3(3): 221-236, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22737280

RESUMEN

Herein we present the outcome of a high throughput screening (HTS) campaign-based strategy for the rapid identification and optimization of selective and general chemotypes for both kappa (κ) opioid receptor (KOR) activation and inhibition. In this program, we have developed potent antagonists (IC(50) < 120 nM) or agonists of high binding affinity (K(i) < 3 nM). In contrast to many important KOR ligands, the compounds presented here are highly modular, readily synthesized and, in most cases, achiral. The four new chemotypes hold promise for further development into chemical tools for studying the KOR or as potential therapeutic lead candidates.

17.
Curr Protoc Chem Biol ; 4(4): 299-309, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23788556

RESUMEN

The Rapid Assessment of Compound Exposure (RACE) assay is an easy and efficient method for estimating the pharmacokinetic parameter of exposure (AUC: area under the curve) of novel chemical probe compounds in mice. RACE is a truncated and compressed version of a traditional comprehensive in vivo pharmacokinetics study. The method uses a single standard formulation, dose, route of administration, and a small cohort of mice (n = 4). Standardized protocols and an abbreviated sample collection scheme reduce the labor needed to perform both the in-life and bioanalytical phases of the study. The procedure reduces the complexity of data analysis by eliminating all but one calculated pharmacokinetic parameter; estimated exposure (eAUC20-120), a parameter that is sufficient to rank order compounds based on exposure, but is also easily determined by most software using the simple trapezoidal rule. The RACE assay protocol is readily applicable to early/exploratory studies of most compounds, and is intended to be employed by laboratories with limited expertise in pharmacology and pharmacokinetics. Curr. Protoc. Chem. Biol. 4:299-309 © 2012 by John Wiley & Sons, Inc.

18.
ACS Med Chem Lett ; 2(10): 780-785, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-22003428

RESUMEN

NOD1 (nucleotide-binding oligomerization domain 1) protein is a member of the NLR (NACHT and leucine rich repeat domain containing proteins) protein family, which plays a key role in innate immunity as a sensor of specific microbial components derived from bacterial peptidoglycans and induction of inflammatory responses. Mutations in NOD proteins have been associated with various inflammatory diseases that affect NF-κB (nuclear factor κB) activity, a major signaling pathway involved in apoptosis, inflammation, and immune response. A luciferase-based reporter gene assay was utilized in a high-throughput screening program conducted under the NIH-sponsored Molecular Libraries Probe Production Center Network program to identify the active scaffolds. Herein, we report the chemical synthesis, structure-activity relationship studies, downstream counterscreens, secondary assay data, and pharmacological profiling of the 2-aminobenzimidazole lead (compound 1c, ML130) as a potent and selective inhibitor of NOD1-induced NF-κB activation.

19.
J Med Chem ; 54(10): 3661-8, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21539312

RESUMEN

We report the discovery and validation of a series of benzoisothiazolones as potent inhibitors of phosphomannose isomerase (PMI), an enzyme that converts mannose-6-phosphate (Man-6-P) into fructose-6-phosphate (Fru-6-P) and, more importantly, competes with phosphomannomutase 2 (PMM2) for Man-6-P, diverting this substrate from critical protein glycosylation events. In congenital disorder of glycosylation type Ia, PMM2 activity is compromised; thus, PMI inhibition is a potential strategy for the development of therapeutics. High-throughput screening (HTS) and subsequent chemical optimization led to the identification of a novel class of benzoisothiazolones as potent PMI inhibitors having little or no PMM2 inhibition. Two complementary synthetic routes were developed, enabling the critical structural requirements for activity to be determined, and the compounds were subsequently profiled in biochemical and cellular assays to assess efficacy. The most promising compounds were also profiled for bioavailability parameters, including metabolic stability, plasma stability, and permeability. The pharmacokinetic profile of a representative of this series (compound 19; ML089) was also assessed, demonstrating the potential of this series for in vivo efficacy when dosed orally in disease models.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Manosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Tiazoles/química , Administración Oral , Química Farmacéutica/métodos , Técnicas Químicas Combinatorias/métodos , Trastornos Congénitos de Glicosilación/genética , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Modelos Químicos , Permeabilidad , Relación Estructura-Actividad
20.
J Med Chem ; 53(12): 4793-7, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20481485

RESUMEN

A unique series of biologically active chemical probes that selectively inhibit NF-kappaB activation induced by protein kinase C (PKC) pathway activators have been identified through a cell-based phenotypic reporter gene assay. These 2-aminobenzimidazoles represent initial chemical tools to be used in gaining further understanding on the cellular mechanisms driven by B and T cell antigen receptors. Starting from the founding member of this chemical series 1a (notated in PubChem as CID-2858522), we report the chemical synthesis, SAR studies, and pharmacological profiling of this pathway-selective inhibitor of NF-kappaB activation.


Asunto(s)
Bencimidazoles/síntesis química , FN-kappa B/antagonistas & inhibidores , Proteína Quinasa C/fisiología , Animales , Bencimidazoles/farmacocinética , Bencimidazoles/farmacología , Línea Celular , Permeabilidad de la Membrana Celular , Genes Reporteros , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Interleucina-2/biosíntesis , Interleucina-8/biosíntesis , Masculino , Ratones , Microsomas Hepáticos/metabolismo , FN-kappa B/genética , FN-kappa B/fisiología , Receptores de Antígenos de Linfocitos B/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA