Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 286: 117239, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33990048

RESUMEN

Several environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms. The objective of this study was to use alachlor, a chloroacetanilide herbicide responsible for chronic toxicity, to understand its impact in target and non-target organisms and at different levels of biological organization by using several model organisms, including membranes of dipalmitoylphosphatidylcholine (DPPC), rat liver mitochondria, bacterial (Bacillus stearothermophilus), plant (Lemna gibba) and mammalian cell lines (HeLa and neuro2a). Our results demonstrated that alachlor strongly interacted with membranes of DPPC and interfered with mitochondrial bioenergetics by reducing the respiratory control ratio and the transmembrane potential. Moreover, alachlor also decreased the growth of B. stearothermophilus and its respiratory activity, as well as decreased the viability of both mammalian cell lines. The values of TC50 increased in the following order: Lemna gibba < neuro2a < HeLa cells < Bacillus stearothermophilus. Together, the results suggest that biological membranes constitute a putative target for the toxic action of this lipophilic herbicide and point out the risks of its dissemination on environment, compromising ecosystem equilibrium and human health.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Contaminantes Químicos del Agua , Acetamidas , Animales , Ecosistema , Contaminantes Ambientales/toxicidad , Células HeLa , Herbicidas/toxicidad , Humanos , Ratas , Medición de Riesgo
2.
Toxicol In Vitro ; 28(5): 932-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24747295

RESUMEN

Linuron is one of the most intensively used herbicides with predictable effects on the environment and non-target organisms. In the present study, two in vitro biological models (a Bacillus sp. and rat liver mitochondria) were used to evaluate linuron toxicity at a cell/subcellular level. Linuron inhibited bacterial growth and NADH-supported respiration, similar IC50 values being estimated for both toxic responses (74 and 98 µM, respectively). At concentrations up to 120 µM, linuron perturbed the respiration and phosphorylation efficiency of rat liver mitochondria, reflected by an increase of state 4 respiration and a decrease of the transmembrane potential, state 3 and FCCP-uncoupled respiration, when malate/glutamate or succinate were used as respiratory substrates. Consequently, a decrease of the respiratory control and ADP/O ratio was observed. This study suggests that linuron membrane interactions with adverse repercussions in the activity of membrane enzymatic complexes, such as those which constitute the prokaryotic and mitochondrial respiratory systems, may underlie the toxic effects exerted by that herbicide on non-target organisms. Moreover, this work contributes to the establishment of our bacterial model system as a good tool for chemical toxicity screening.


Asunto(s)
Bacillus/efectos de los fármacos , Herbicidas/toxicidad , Linurona/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/fisiología , Oxígeno/metabolismo , Ratas Wistar
3.
Toxicology ; 270(2-3): 99-105, 2010 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-20138954

RESUMEN

Ecstasy, which is used as a recreational drug, is a common street name for 3, 4-methylenedioxymethamphetamine (MDMA). Another drug of abuse chemically related, though less common than MDMA, is the amphetamine derivative 4-methylthioamphetamine (MTA). MDMA and MTA induce different systemic and organ-specific effects, including neurotoxicity, hyperthermia, nephrotoxicity, cardiotoxicity and hepatotoxicity. Therefore, it is clear that MDMA and MTA are responsible for inducing organ toxicity. The mechanisms underlying MDMA and MTA-induced hepatotoxicity are multifactorial, and therefore not completely understood. Recent findings indicate interference with cellular bioenergetics as an important toxicological feature of ecstasy. However, less is known about the involvement of mitochondria in MTA-induced hepatotoxicity. Thus, we compared the direct influence of MDMA and MTA on rat liver mitochondrial function [mitochondrial permeability transition (MPT), mitochondrial oxidative stress, and mitochondrial bioenergetics]. It was shown that MTA (from 0.025 up to 0.1mM) was more potent than MDMA (from 0.2 up to 0.5mM) in decreasing the sensitivity of rat liver mitochondria to MPT. However, higher concentrations of MTA (from 0.5 up to 2mM) were highly toxic to mitochondria. MTA simultaneously increased H(2)O(2) production in a monoamine oxidase (MAO)-dependent way, and uncoupled and inhibited mitochondrial respiration. In contrast, MDMA had only limited or no effects on these mitochondrial parameters. According to these results, it is possible to postulate that, depending on the concentration, MTA can potentially be more efficient in its effects on liver mitochondria than MDMA and, also, that its harmful effects may contribute to its hepatotoxicity.


Asunto(s)
Inhibidores de Captación Adrenérgica/toxicidad , Anfetaminas/toxicidad , Alucinógenos/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Animales , Metabolismo Energético/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo
4.
Toxicol In Vitro ; 23(7): 1333-41, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19596436

RESUMEN

It is increasingly recognised that mitochondria are potential targets to pharmacological and toxicological actions of membrane-active agents, including some 1,4-dihydropyridines derivatives (DHPs). The 5-acetyl(carbamoyl)-6-methylsulfanyl-1,4-dihydropyridine-5-carbonitriles (OSI-1146, OSI-3701, OSI-3761, and OSI-9642) is a new group of DHPs with minor differences on the molecular structure. It has also been shown that OSI-1146 displays cardiovascular, antioxidant, and antiradical activities, whereas OSI-3701 and OSI-3761 display hepatoprotective activity. Due to their protective properties, this group of DHPs may be potentially useful for the treatment of several pathological processes, including those associated with oxidative stress. However, the cellular targets for their pharmacological actions have not been investigated. The presented study, using isolated rat liver mitochondria was designed to investigate if mitochondria are a cellular target for the pharmacological and/or toxicological actions of these new group of DHPs. We studied the direct influence of these DHPs on rat liver mitochondrial function [bioenergetics, membrane permeability transition (MPT), and oxidative stress]. It was shown that OSI-1146, OSI-3761, and OSI-9642, in the concentration range of up to 200 microM, interfered with mitochondrial bioenergetics by affecting complexes I and II of the mitochondrial respiratory chain, the ATPase activity, and mitochondrial inner membrane permeability to protons. However, the effects of OSI-1146 were higher than those of OSI-3761 and OSI-9642. The remaining compound, OSI-3701, had no effect on the bioenergetic parameters tested. All the compounds increased the susceptibility of mitochondria to MPT, but, OSI-3701, not affecting the bioenergetic parameters, was the most potent. Moreover, all the compounds protected mitochondria against lipid peroxidation induced by the oxidant pair ADP/Fe(2+), but OSI-1146 was also the most potent. In conclusion, our results indicate that mitochondria are the potential intracellular targets for both protective and toxicological actions of the DHP compounds studied, suggesting that the potential use of these compounds as therapeutic agents should carefully consider their toxic effects to mitochondria.


Asunto(s)
Antioxidantes/toxicidad , Dihidropiridinas/química , Mitocondrias Hepáticas/efectos de los fármacos , Nitrilos/toxicidad , Animales , Antioxidantes/química , Antioxidantes/farmacología , Metabolismo Energético/efectos de los fármacos , Masculino , Mitocondrias Hepáticas/metabolismo , Nitrilos/química , Nitrilos/farmacología , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
5.
Toxicol In Vitro ; 23(8): 1585-90, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19607910

RESUMEN

Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B.stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 micromol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro.


Asunto(s)
Acetamidas/toxicidad , Geobacillus stearothermophilus/efectos de los fármacos , Herbicidas/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Geobacillus stearothermophilus/crecimiento & desarrollo , Geobacillus stearothermophilus/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar
6.
Toxicology ; 259(1-2): 18-24, 2009 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-19428939

RESUMEN

Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to H(+); (3) does not significantly affect H(2)O(2) generation by mitochondria; (4) its mitochondrial damaging effects are protected by thiol group protecting agents. Based on these conclusions, it is possible to hypothesise that small changes on the redox-status of thiol groups, affecting membrane permeability to cations (Ca(2+) and H(+)) underlie CisPt-induced liver mitochondrial damage, putatively responsible for its hepatotoxicity. Therefore, we propose that CisPt-induced mitochondrial damage and consequent hepatotoxicity could be prevented by using thiol group protecting agents as therapeutic adjuvants.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Compuestos de Sulfhidrilo/farmacología , Animales , Antineoplásicos/administración & dosificación , Antioxidantes/farmacología , Calcio/metabolismo , Cisplatino/administración & dosificación , Relación Dosis-Respuesta a Droga , Fluorescencia , Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Mitocondrias Hepáticas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Permeabilidad , Ratas , Ratas Wistar
7.
Aquat Toxicol ; 91(1): 1-9, 2009 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-19027182

RESUMEN

Although essential for plants, copper can be toxic when present in supra-optimal concentrations. Metal polluted sites, due to their extreme conditions, can harbour tolerant species and/or ecotypes. In this work we aimed to compare the physiological responses to copper exposure and the uptake capacities of two species of duckweed, Lemna minor (Lm(EC1)) and Spirodela polyrrhiza (SP), from an abandoned uranium mine with an ecotype of L. minor (Lm(EC2)) from a non-contaminated pond. From the lowest Cu concentration exposure (25microM) to the highest (100microM), Lm(EC2) accumulated higher amounts of copper than Lm(EC1) and SP. Dose-response curves showed that Cu content accumulated by Lm(EC2) increases linearly with Cu treatment concentrations (r(2)=0.998) whereas quadratic models were more suitable for Lm(EC1) and SP (r(2)=0.999 and r(2)=0.998 for Lm(EC1) and SP, respectively). A significant concentration-dependent decline of chlorophyll a (chl a) and carotenoid occurred as a consequence of Cu exposure. These declines were significant for Lm(EC2) exposed to the lowest Cu concentration (25microM) whereas for Lm(EC1) and SP a significant decrease in chl a and carotenoids was observed only at 50 and 100microM-Cu. Electric conductivity (EC) and malondialdehyde (MDA) content increased after Cu exposure, indicating oxidative stress. Significant increase of EC was observed in Lm(EC2) for all Cu concentrations whereas the increase for Lm(EC1) and SP became significant only after an exposure to 50microM-Cu. On the contrary, for Lm(EC1), SP, and Lm(EC2), MDA content significantly increased even at the lowest concentration. Protein content and catalase (CAT) activity showed a decrease with an increase in Cu concentration. For the species Lm(EC1) and SP, a significant effect of copper on CAT activity was observed only at the highest concentration (100microM-Cu) whereas, for Lm(EC2), this effect started to be significant after an exposure to 50microM-Cu. Superoxide dismutase (SOD) activity increased with increasing concentrations of Cu, with a very similar trend between the three populations of duckweed. However, due to the facts that enzyme activity is expressed as units of activity per gram of protein and that protein content decreased with Cu exposure, the increase in SOD activity might partly result from a relative increase of this enzyme inside the pool of proteins. Consequently, the results obtained in our experimental conditions strongly suggest that duckweed species from the uranium-polluted area have developed mechanisms to cope with metal toxicity and that this tolerance is based on the existence of protective mechanism to limit the metal uptake rather than on an enhancement of the antioxidative metabolism.


Asunto(s)
Araceae/efectos de los fármacos , Cobre/toxicidad , Contaminantes Químicos del Agua/toxicidad , Araceae/enzimología , Araceae/metabolismo , Carotenoides/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Cobre/metabolismo , Electrólitos/metabolismo , Agua Dulce/análisis , Peroxidación de Lípido/efectos de los fármacos , Proteínas/metabolismo , Superóxido Dismutasa/metabolismo
8.
Chem Biol Interact ; 173(3): 195-204, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18452904

RESUMEN

The 1,4-dihydropyridines OSI-1210, OSI-1211 (etaftoron), and OSI-3802 are compounds with similar chemical structure. They differ by the length of the alkoxyl chain in positions 3 and 5 of the dihydropyridine (DHP) ring and by their pharmacological action characteristics. However, as far as we know, a clear relationship between the effects of these compounds and the length of the alkoxyl chain in positions 3 and 5 of the DHP has not been established. The goal of this study was to compare the influence of OSI-1210, OSI-1211 (etaftoron), and OSI-3802 on rat liver mitochondrial bioenergetics and on the physical properties of membrane lipid bilayers, correlating their actions with the length of the alkoxyl chain in positions 3 and 5 of the DHP ring. Using either glutamate/malate or succinate as respiratory substrates, all the compounds, in concentrations of up to 500 microM, depressed state 3 and uncoupled respiration, respiratory control (RCR) and ADP/O ratios, and phosphorylation rate, whereas state 4 respiration was stimulated. However, the stimulatory effect on state 4 induced by OSI-3802, the compound with the longest chain in positions 3 and 5 of the DHP ring, as well as its inhibitory effects on RCR and ADP/O ratios and phosphorylation rate were more pronounced than that induced by OSI-1210 and OSI-1211 (etaftoron), the compounds with the shortest and intermediate chains, respectively. Moreover, OSI-3802 maximized state 4 stimulation and minimized RCR and ADP/O ratios, and phosphorylation rate at a concentration of 100 microM, whereas low graduate effects were detected with OSI-1210 and OSI-1211 (etaftoron) for concentrations of up to 500 microM. At low concentrations (< or =30 microM), OSI-3802, like its analogue OSI-1212 (cerebrocrast), reduced the phase transition temperature, the cooperative unit size, and the enthalpy associated with the phase transition temperature of dimyristoylphosphatidylcholine (DMPC) membrane bilayers. A good correlation was established between the effects of 200 microM OSI-1210, OSI-1211 (etaftoron), and OSI-3802 on glutamate/malate- and succinate-dependent RCR of rat liver mitochondria and on the enthalpy change (Delta H) for the thermotropic profile of DMPC membrane bilayers at a 0.2 drug/DMPC molar ratio, indicating that the changes induced by these compounds on both mitochondrial membrane integrity and physical properties of DMPC membrane bilayers are strongly related to the length of the alkoxyl chain in positions 3 and 5 of the DHP ring. A putative relationship between membrane physical perturbation, bioenergetics impairment and the molecular characteristics of the compounds will be established as an approach to better understand their differentiated toxicological and pharmacological actions.


Asunto(s)
Membrana Celular/efectos de los fármacos , Dihidropiridinas/farmacología , Metabolismo Energético , Membrana Dobles de Lípidos , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Membrana Celular/química , Dihidropiridinas/química , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Membrana Dobles de Lípidos/química , Masculino , Mitocondrias Hepáticas/química , Modelos Biológicos , Estructura Molecular , Ratas , Ratas Wistar , Relación Estructura-Actividad
9.
Mol Cell Biochem ; 309(1-2): 77-85, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18026820

RESUMEN

Sildenafil citrate (Viagra) is a potent and specific inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5), which exhibits cardioprotective action against ischemia/reperfusion injury in intact and isolated heart. The mechanism of its cardioprotective action is not completely understood, but some results suggested that sildenafil exerts cardioprotection through the opening of mitochondrial ATP-sensitive K+ channels (mitoKATP). However, the impact of sildenafil citrate per se on isolated heart mitochondrial function is unknown. The goal of this study was to investigate the influence of the compound on mitochondrial function (bioenergetics, Ca2+-induced mitochondrial permeability transition, and hydrogen peroxide (H2O2) generation) in an attempt to correlate its known actions with effects on heart mitochondria. It was observed that sildenafil citrate concentrations of up to 50 muM did not significantly affect glutamate/malate-supported respiration in states 2, 3, 4, oligomycin-inhibited state 3, and uncoupled respiration. The respiratory control ratio (RCR), the ADP to oxygen ratio (ADP/O), the transmembrane potential (DeltaPsi), the phosphorylation rate, and the membrane permeability to H+, K+ and Ca2+ were not affected either. However, sildenafil citrate decreased H2O2 generation by mitochondria respiring glutamate/malate, and also decreased the formation of superoxide radical (O2 (*-) ) generated in a hypoxantine/xantine oxidase system. It was concluded that sildenafil citrate concentrations of up to 50 microM do not affect either rat heart mitochondrial bioenergetics or Ca2+-induced mitochondrial permeability transition, but it depresses H2O2 generation by acting as a superoxide dismutase (SOD)-mimetic. By preventing reactive oxygen species (ROS) generation, sildenafil citrate may preserve heart mitochondrial function.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Piperazinas/farmacología , Sulfonas/farmacología , Animales , Calcio/farmacología , Respiración de la Célula/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Piperazinas/química , Purinas/química , Purinas/farmacología , Ratas , Ratas Wistar , Citrato de Sildenafil , Sulfonas/química , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
10.
Mitochondrion ; 6(4): 176-85, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16890028

RESUMEN

The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100 nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300 nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.


Asunto(s)
Antioxidantes/toxicidad , Bencilisoquinolinas/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Bencilisoquinolinas/farmacología , Calcio/metabolismo , Respiración de la Célula/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Ratas
11.
Mitochondrion ; 5(5): 341-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16099223

RESUMEN

Considering that cerebrocrast stimulates oligomycin-inhibited state 3 respiration simultaneously with mitochondrial transmembrane potential (Deltapsi) dissipation, the mechanism underlying the uncoupler activity of cerebrocrast was assessed by its ability to permeabilize the mitochondrial inner membrane to H(+) or to K(+) or to cotransport anions with H(+). The partition coefficient of cerebrocrast in mitochondrial membrane and its ability to act as a membrane-active compound disturbing membrane lipid organization were also investigated. Cerebrocrast induced no permeabilization of mitochondrial inner membrane to H(+) or K(+), but it was able to transport H(+) in association with Cl(-). Cerebrocrast showed a strong incorporation into the mitochondrial membrane, with a partition coefficient (Kp(m/w)) of 2.7(+/-0.1)x10(5). Cerebrocrast also reduced, in a concentration dependent manner, the phase transition temperature, the cooperative unit size, and the enthalpy associated with the phase transition temperature of DMPC membrane bilayers. It was concluded that the uncoupler activity of cerebrocrast is due to its ability to promote the cotransport of H(+) with Cl(-) through the rat liver mitochondrial inner membrane, and that this cerebrocrast mechanism of action may be potentiated by alterations of membrane lipid organization and membrane lateral heterogeneity.


Asunto(s)
Cloruros/metabolismo , Dihidropiridinas/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Protones , Adenosina Difosfato/química , Análisis de Varianza , Animales , Transporte Biológico , Dihidropiridinas/química , Dimiristoilfosfatidilcolina/química , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lípidos/química , Masculino , Potenciales de la Membrana , Mitocondrias/patología , Mitocondrias Hepáticas/metabolismo , Modelos Químicos , Ratas , Ratas Wistar , Espectrometría de Fluorescencia , Temperatura , Termodinámica
12.
Biochem Mol Biol Educ ; 33(2): 128-32, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21638559

RESUMEN

Potato tubers and turnip roots were used to prepare purified mitochondria for laboratory practical work in the teaching of the citric acid cycle (TCA cycle). Plant mitochondria are particularly advantageous over the animal fractions to demonstrate the TCA cycle enzymatic steps, by using simple techniques to measure O(2) consumption and transmembrane potential (ΔΨ). The several TCA cycle intermediates induce specific enzyme activities, which can be identified by respiratory parameters. Such a strategy is also used to evidence properties of the TCA cycle enzymes: ADP stimulation of isocitrate dehydrogenase and α-ketoglutarate dehydrogenase; activation by citrate of downstream oxidation steps, e.g. succinate dehydrogenase; and regulation of the activity of isocitrate dehydrogenase by citrate action on the citrate/isocitrate carrier. Furthermore, it has been demonstrated that, in the absence of exogenous Mg(2+) , isocitrate-dependent respiration favors the alternative oxidase pathway, as judged by changes of the ADP/O elicited by the inhibitor n-propyl galate. These are some examples of assays related with TCA cycle intermediates we can use in laboratory courses.

13.
J Biochem Mol Toxicol ; 18(3): 162-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15252873

RESUMEN

The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Gliburida/toxicidad , Hipoglucemiantes/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Respiración de la Célula/efectos de los fármacos , Cloruros/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Potasio/metabolismo , Protones , Ratas , Ratas Wistar , Succinato Deshidrogenasa/metabolismo
14.
J Bioenerg Biomembr ; 36(6): 525-31, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15692731

RESUMEN

Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.


Asunto(s)
Magnesio/metabolismo , Mitocondrias/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Calcio/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Ácido Cítrico/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Cetoglutáricos/metabolismo , Magnesio/farmacología , Malatos/metabolismo , Potenciales de la Membrana/fisiología , Mitocondrias/enzimología , Dilatación Mitocondrial/fisiología , Oxidorreductasas/metabolismo , Fosforilación , Tubérculos de la Planta/fisiología , Solanum tuberosum/fisiología , Ácido Succínico/metabolismo
15.
J Biochem Mol Toxicol ; 17(3): 185-92, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12815615

RESUMEN

The herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) was evaluated for its effects on bioenergetic activities of potato tuber mitochondria to elucidate putative mechanisms of action and to compare its toxicity with 2-chlorobenzoic acid. Dicamba (4 micro mol/mg mitochondrial protein) induces a limited stimulation of state 4 respiration of ca. 10%, and the above concentrations significantly inhibit respiration, whereas 2-chlorobenzoic acid maximally stimulates state 4 respiration (ca. 50%) at about 25 micro mol/mg mitochondrial protein. As opposed to these limited effects on state 4 respiration, transmembrane electrical potential is strongly decreased by dicamba and 2-chlorobenzoic acid. Dicamba (25 micro mol/mg mitochondrial protein) collapses, almost completely, Deltapsi; similar concentrations of 2-chlorobenzoic acid promote Deltapsi drops of about 50%. Proton permeabilization partially contributes to Deltapsi collapse since swelling in K-acetate medium is stimulated, with dicamba promoting a stronger stimulation. The Deltapsi decrease induced by dicamba is not exclusively the result of a stimulation on the proton leak through the mitochondrial inner membrane, since there was no correspondence between the Deltapsi decrease and the change on the O(2) consumption on state 4 respiration; on the contrary, for concentrations above 8 micro mol/mg mitochondrial protein a strong inhibition was observed. Both compounds inhibit the activity of respiratory complexes II and III but complex IV is not significantly affected. Complex I seems to be sensitive to these xenobiotics. In conclusion, dicamba is a stronger mitochondrial respiratory chain inhibitor and uncoupler as compared to 2-chlorobenzoic acid. Apparently, the differences in the lipophilicity are related to the different activities on mitochondrial bioenergetics.


Asunto(s)
Dicamba/análogos & derivados , Dicamba/toxicidad , Metabolismo Energético/efectos de los fármacos , Herbicidas/toxicidad , Mitocondrias/metabolismo , Solanum tuberosum/metabolismo , Clorobenzoatos/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimología , Succinato Deshidrogenasa/metabolismo
16.
Arch Toxicol ; 77(7): 403-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12669190

RESUMEN

The effects of dicamba, a widely used broad-leaf herbicide, on rat liver mitochondrial bioenergetic activities were examined. The results obtained for state 4 respiration indicate not only an uncoupling effect, the result of an increase on the permeability of inner mitochondria membrane to protons, but also a strong inhibitory effect on the redox complexes. State 3 and respiration uncoupled by FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone) were inhibited to approximately the same extent, i.e. by about 70%. Depression of respiratory activity is essentially mediated through partial inhibition of mitochondrial complexes II and III. ATPase activity was much less depressed by dicamba than ATP synthase activity. Therefore, a considerable part of the inhibition observed on ATP synthase is the result of an inhibition on the redox complexes. The loss of phosphorylation capacity, induced by dicamba, was in the last analysis not only the result of a direct effect of dicamba on the enzymatic complex (F(0)-F(1) ATPase) but also the result of a deleterious effect on the integrity of the mitochondrial membrane, which can promote an inhibition of the respiratory complexes and an increase of the proton permeability of the inner membrane.


Asunto(s)
Dicamba/toxicidad , Herbicidas/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Respiración de la Célula/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Ratas , Ratas Wistar , Succinato Citocromo c Oxidorreductasa/metabolismo , Succinato Deshidrogenasa/metabolismo
17.
Mitochondrion ; 3(1): 47-59, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16120344

RESUMEN

The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...