Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 224(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34160050

RESUMEN

The predicted rise of global temperatures is of major concern for ectotherms because of its direct impact on their behavior and physiology. As physiological performance mediates a species' resilience to warming exposure, physiological plasticity could greatly reduce the susceptibility to climate change. We studied the degree to which Diplolaemus leopardinus lizards are able to adjust behavioral and physiological traits in response to short periods of temperature change. We used a split cross design to measure the acclimation response of preferred body temperature (Tp), and the thermal performance curve of resting metabolic rate (RMR) and evaporative water loss (EWL). Our results showed that plasticity differs among traits: whereas Tp and EWL showed lower values in warm conditions, the body temperature at which RMR was highest increased. Moreover, RMR was affected by thermal history, showing a large increase in response to cold exposure in the group initially acclimated to warm temperatures. The reduction of EWL and the increase in optimal temperature will give lizards the potential to partially mitigate the impact of rising temperatures in the energy cost and water balance. However, the decrease in Tp and the sensitivity to the warm thermal history of RMR could be detrimental to the energy net gain, increasing the species' vulnerability, especially considering the increase of heat waves predicted for the next 50 years. The integration of acclimation responses in behavioral and physiological traits provides a better understanding of the range of possible responses of lizards to cope with the upcoming climatic and environmental modifications expected as a result of climate change.


Asunto(s)
Iguanas , Lagartos , Panthera , Aclimatación , Animales , Argentina , Cambio Climático , Temperatura
2.
An Acad Bras Cienc ; 93(2): e20190662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34076087

RESUMEN

Basking and retreat sites constitute a key resource in the habitat of any ectotherm. Identifying the elements that are used and modelling the microhabitat selection of species is crucial for assessing the impact of anthropogenic disturbances at the population level and, therefore, focusing on conservation efforts. We investigated how structural attributes of the microhabitat and biotic factors influence the probability of basking and retreat sites use by Phymaturus palluma, a rock-dwelling and viviparous lizard endemic to the Central Andes of Argentina. We measured the characteristics of a series of rocks (basking sites) and shelters (retreat sites) in the study area and compared lizard resource use versus availability using resource selection analyses (RSFs). According to our best RSF model, P. palluma select high and large rocks as basking sites and prefer those near their retreat sites and far from the basking sites of their neighbours. In contrast, retreat site selection is related to the length, depth, slope, and width of the shelter. Microhabitat site selection of P. palluma is associated with behavioural improvements such as enhancing basking capacity, reducing both intraspecific competition with neighbours and predation risk.


Asunto(s)
Lagartos , Animales , Argentina , Ecosistema , Humanos
3.
J Exp Biol ; 223(Pt 12)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32366690

RESUMEN

In ectotherms, temperature exerts a strong influence on the performance of physiological and ecological traits. One approach to understanding the impact of rising temperatures on animals and their ability to cope with climate change is to quantify variation in thermal-sensitive traits. Here, we examined the thermal biology, temperature dependence and thermal plasticity of bite force (endurance and magnitude) in Diplolaemus leopardinus, an aggressive and territorial lizard endemic to Mendoza province, Argentina. Our results indicate that this lizard behaves like a moderate thermoregulator that uses the rocks of its environment as the main heat source. Bite endurance was not influenced by head morphometry and body temperature, whereas bite force was influenced by head length and jaw length, and exhibited thermal dependence. Before thermal acclimation treatments, the maximum bite force for D. leopardinus occurred at the lowest body temperature and fell sharply with increasing body temperature. After acclimation treatments, lizards acclimated at higher temperatures exhibited greater bite force. Bite force showed phenotypic plasticity, which reveals that leopard iguanas are able to maintain (and even improve) their bite force under a rising-temperature scenario.


Asunto(s)
Iguanas , Lagartos , Panthera , Aclimatación , Animales , Argentina , Fuerza de la Mordida , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...