Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6068, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025931

RESUMEN

Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.


Asunto(s)
Proteínas de Drosophila , Anticuerpos de Dominio Único , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Anticuerpos de Dominio Único/metabolismo , Drosophila melanogaster/metabolismo , Neuronas Motoras/metabolismo , Dominios PDZ , Axones/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Transporte de Proteínas , Moléculas de Adhesión Celular Neuronal
2.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38903091

RESUMEN

The formation of functional synapses requires co-assembly of ion channels with their accessory proteins which controls where, when, and how neurotransmitter receptors function. The auxiliary protein Neto modulates the function of kainate-type glutamate receptors in vertebrates as well as at the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse widely used for genetic studies on synapse development. We previously reported that Neto is essential for the synaptic recruitment and function of glutamate receptors. Here, using outside-out patch-clamp recordings and fast ligand application, we examine for the first time the biophysical properties of recombinant Drosophila NMJ receptors expressed in HEK293T cells and compare them with native receptor complexes of genetically controlled composition. The two Neto isoforms, Neto-α and Neto-ß, differentially modulate the gating properties of NMJ receptors. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of iGluR desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals.

3.
Dev Cell ; 59(9): 1210-1230.e9, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569548

RESUMEN

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.


Asunto(s)
Drosophila melanogaster , Larva , Neuronas Motoras , Animales , Larva/genética , Larva/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , RNA-Seq/métodos , Análisis de Expresión Génica de una Sola Célula
4.
Cancer Gene Ther ; 31(5): 667-686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438559

RESUMEN

In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología
5.
Genes (Basel) ; 14(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761906

RESUMEN

The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.


Asunto(s)
Ciclofilina A , Disqueratosis Congénita , Humanos , Catálisis , Disqueratosis Congénita/genética , Ribonucleoproteínas , Proteínas de Unión al ARN
6.
Biomedicines ; 11(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239099

RESUMEN

Colorectal cancer (CRC) stands as the third most significant contributor to cancer-related mortality worldwide. A major underlying reason is that the detection of CRC usually occurs at an advanced metastatic stage, rendering therapies ineffective. In the progression from the in situ neoplasia stage to the advanced metastatic stage, a critical molecular mechanism involved is the epithelial-to-mesenchymal transition (EMT). This intricate transformation consists of a series of molecular changes, ultimately leading the epithelial cell to relinquish its features and acquire mesenchymal and stem-like cell characteristics. The EMT regulation involves several factors, such as transcription factors, cytokines, micro RNAs and long noncoding RNAs. Nevertheless, recent studies have illuminated an emerging link between metabolic alterations and EMT in various types of cancers, including colorectal cancers. In this review, we delved into the pivotal role played by EMT during CRC progression, with a focus on highlighting the relationship between the alterations of the tricarboxylic acid cycle, specifically those involving the succinate dehydrogenase enzyme, and the activation of the EMT program. In fact, emerging evidence supports the idea that elucidating the metabolic modifications that can either induce or inhibit tumor progression could be of immense significance for shaping new therapeutic approaches and preventative measures. We conclude that an extensive effort must be directed towards research for the standardization of drugs that specifically target proteins such as SDH and SUCNR1, but also TRAP1, PDH, ERK1/2, STAT3 and the HIF1-α catabolism.

7.
Curr Top Dev Biol ; 150: 211-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35817503

RESUMEN

Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.


Asunto(s)
Proteínas de Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Unión Neuromuscular , Transducción de Señal/fisiología , Sinapsis
8.
Biomedicines ; 10(5)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35625829

RESUMEN

Dyskerin is an evolutionarily conserved nucleolar protein implicated in a wide range of fundamental biological roles, including telomere maintenance and ribosome biogenesis. Germline mutations of DKC1, the human gene encoding dyskerin, cause the hereditary disorders known as X-linked dyskeratosis congenita (X-DC). Moreover, dyskerin is upregulated in several cancers. Due to the pleiotropic functions of dyskerin, the X-DC clinical features overlap with those of both telomeropathies and ribosomopathies. In this paper, we evaluate the telomerase-independent effects of dyskerin depletion on cellular physiology by using inducible DCK1 knockdown. This system allows the downregulation of DKC1 expression within a short timeframe. We report that, in these cellular systems, dyskerin depletion induces the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum, which in turn induces the activation of the PERK branch of the unfolded protein response. We also demonstrate that the PERK-eIF2a-ATF4-CHOP signaling pathway, activated by dyskerin downregulation, triggers a functional autophagic flux through the inhibition of the PI3K/AKT/mTOR pathway. By revealing a novel unpredicted connection between the loss of dyskerin, autophagy and UPR, our results establish a firm link between the lowering of dyskerin levels and the activation of the ER stress response, that plays a key role in the pathogenesis of several diseases.

9.
Curr Protoc ; 1(2): e37, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33600085

RESUMEN

Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. This powerful tool has been instrumental in profiling different cell types and investigating, at the single-cell level, cell states, functions, and responses. However, mining these data requires new analytical and statistical methods for high-dimensional analyses that must be customized and adapted to specific goals. Here we present a custom multistage analysis pipeline which integrates modules contained in different R packages to ensure flexible, high-quality RNA-seq data analysis. We describe this workflow step by step, providing the codes, explaining the rationale for each function, and discussing the results and the limitations. We apply this pipeline to analyze different datasets of Drosophila larval ventral cords, identifying and describing rare cell types, such as astrocytes and neuroendocrine cells. This multistage analysis pipeline can be easily implemented by both novice and experienced scientists interested in neuronal and/or cellular diversity beyond the Drosophila model system. © 2021 US Government.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Animales , Drosophila/genética , Perfilación de la Expresión Génica , Larva/genética
10.
Curr Protoc ; 1(2): e38, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33620770

RESUMEN

Drosophila provides a powerful genetic system and an excellent model to study the development and function of the nervous system. The fly's small brain and complex behavior has been instrumental in mapping neuronal circuits and elucidating the neural basis of behavior. The fast pace of fly development and the wealth of genetic tools has enabled systematic studies on cell differentiation and fate specification, and has uncovered strategies for axon guidance and targeting. The accessibility of neuronal structures and the ability to edit and manipulate gene expression in selective cells and/or synaptic compartments has revealed mechanisms for synapse assembly and neuronal connectivity. Recent advances in single-cell RNA sequencing (scRNA-seq) have further enhanced our appreciation and understanding of neuronal diversity in a fly brain. However, due to the small size of the fly brain and its constituent cells, scRNA-seq methodologies require a few adaptations. Here, we describe a set of protocols optimized for scRNA-seq analysis of the Drosophila larval ventral nerve cord, starting from tissue dissection and cell dissociation to cDNA library preparation, sequencing, and data analysis. We apply this workflow to three separate samples and detail the technical challenges associated with successful application of scRNA-seq to studies on neuronal diversity. An accompanying article (Vicidomini, Nguyen, Choudhury, Brody, & Serpe, 2021) presents a custom multistage analysis pipeline that integrates modules contained in different R packages to ensure high-flexibility, high-quality RNA-seq data analysis. These protocols are developed for Drosophila larval ventral nerve cord, but could easily be adapted to other tissues and model organisms. © 2021 U.S. Government. Basic Protocol 1: Dissection of larval ventral nerve cords and preparation of single-cell suspensions Basic Protocol 2: Preparation and sequencing of single-cell transcriptome libraries Basic Protocol 3: Alignment of raw sequencing data to indexed genome and generation of count matrices.


Asunto(s)
Drosophila , Análisis de la Célula Individual , Animales , Drosophila/genética , Larva/genética , Análisis de Secuencia de ARN , Programas Informáticos
11.
Cell Rep ; 32(1): 107866, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640231

RESUMEN

Glutamate receptor auxiliary proteins control receptor distribution and function, ultimately controlling synapse assembly, maturation, and plasticity. At the Drosophila neuromuscular junction (NMJ), a synapse with both pre- and postsynaptic kainate-type glutamate receptors (KARs), we show that the auxiliary protein Neto evolved functionally distinct isoforms to modulate synapse development and homeostasis. Using genetics, cell biology, and electrophysiology, we demonstrate that Neto-α functions on both sides of the NMJ. In muscle, Neto-α limits the size of the postsynaptic receptor field. In motor neurons (MNs), Neto-α controls neurotransmitter release in a KAR-dependent manner. In addition, Neto-α is both required and sufficient for the presynaptic increase in neurotransmitter release in response to reduced postsynaptic sensitivity. This KAR-independent function of Neto-α is involved in activity-induced cytomatrix remodeling. We propose that Drosophila ensures NMJ functionality by acquiring two Neto isoforms with differential expression patterns and activities.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/ultraestructura , Proteínas de la Membrana/química , Unión Neuromuscular/ultraestructura , Densidad Postsináptica/ultraestructura , Dominios Proteicos , Receptores de Glutamato/metabolismo
12.
Redox Biol ; 14: 557-565, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29132127

RESUMEN

The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere maintenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy metabolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells. These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously underscored role in the regulation of metabolic cell homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Proteínas Nucleares/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxidos/metabolismo
13.
FEBS Open Bio ; 7(10): 1453-1468, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28979836

RESUMEN

Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X-linked dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras-related protein Rab-5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin-related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss-of-function phenotype.

14.
Sci Rep ; 7(1): 347, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28337032

RESUMEN

Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.


Asunto(s)
Células Madre Adultas/fisiología , Proteínas de Drosophila/fisiología , Homeostasis , Hidroliasas/fisiología , Proteínas Nucleares/fisiología , Animales , Diferenciación Celular , Drosophila/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Proteínas de Unión al ARN , Nicho de Células Madre
15.
Biol Chem ; 395(6): 593-610, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24468621

RESUMEN

Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Disqueratosis Congénita/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Ciclo Celular/genética , Disqueratosis Congénita/genética , Humanos , Proteínas Nucleares/genética , Telómero
16.
J Vis Exp ; (38)2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20436400

RESUMEN

Heterogeneous nature of tissues has proven to be a limiting factor in the amount of information that can be generated from biological samples, compromising downstream analyses. Considering the complex and dynamic cellular associations existing within many tissues, in order to recapitulate the in vivo interactions thorough molecular analysis one must be able to analyze specific cell populations within their native context. Laser-mediated microdissection can achieve this goal, allowing unambiguous identification and successful harvest of cells of interest under direct microscopic visualization while maintaining molecular integrity. We have applied this technology to analyse gene expression within defined areas of the developing Drosophila wing disc, which represents an advantageous model system to study growth control, cell differentiation and organogenesis. Larval imaginal discs are precociously subdivided into anterior and posterior, dorsal and ventral compartments by lineage restriction boundaries. Making use of the inducible GAL4-UAS binary expression system, each of these compartments can be specifically labelled in transgenic flies expressing an UAS-GFP transgene under the control of the appropriate GAL4-driver construct. In the transgenic discs, gene expression profiling of discrete subsets of cells can precisely be determined after laser-mediated microdissection, using the fluorescent GFP signal to guide laser cut. Among the variety of downstream applications, we focused on RNA transcript profiling after localised RNA interference (RNAi). With the advent of RNAi technology, GFP labelling can be coupled with localised knockdown of a given gene, allowing to determinate the transcriptional response of a discrete cell population to the specific gene silencing. To validate this approach, we dissected equivalent areas of the disc from the posterior (labelled by GFP expression), and the anterior (unlabelled) compartment upon regional silencing in the P compartment of an otherwise ubiquitously expressed gene. RNA was extracted from microdissected silenced and unsilenced areas and comparative gene expression profiling determined by quantitative real-time RT-PCR. We show that this method can effectively be applied for accurate transcriptomics of subsets of cells within the Drosophila imaginal discs. Indeed, while massive disc preparation as source of RNA generally assumes cell homogeneity, it is well known that transcriptional expression can vary greatly within these structures in consequence of positional information. Using localized fluorescent GFP signal to guide laser cut, more accurate transcriptional analyses can be performed and profitably applied to disparate applications, including transcript profiling of distinct cell lineages within their native context.


Asunto(s)
Drosophila/genética , Perfilación de la Expresión Génica/métodos , Microdisección/métodos , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Drosophila/embriología , Rayos Láser , Alas de Animales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...