RESUMEN
OBJECTIVES: Cortical posterior hypometabolism on PET imaging with 18F-FDG (FDG-PET), and altered levels of Aß1-42 peptide, total Tau (tTau) and phosphorylated Tau (pTau) proteins in cerebrospinal fluid (CSF) are established diagnostic biomarkers in Alzheimer's disease (AD). An evaluation has been made of the concordance and relationship between the results of FDG-PET and CSF biomarkers in symptomatic patients with suspected AD. MATERIAL AND METHODS: A retrospective review was carried out on 120 patients with cognitive impairment referred to our Cognitive Neurology Unit, and who were evaluated by brain FDG-PET and a lumbar puncture for CSF biomarkers. In order to calculate their Kappa coefficient of concordance, the result of the FDG-PET and the set of the three CSF biomarkers in each patient was classified as normal, inconclusive, or AD-compatible. The relationship between the results of both methods was further assessed using logistic regression analysis, including the Aß1-42, tTau and pTau levels as quantitative predictors, and the FDG-PET result as the dependent variable. RESULTS: The weighted Kappa coefficient between FDG-PET and CSF biomarkers was 0.46 (95% CI: 0.35-0.57). Logistic regression analysis showed that the Aß1-42 and tTau values together were capable of discriminating an FDG-PET result metabolically suggestive of AD from one non-suggestive of AD, with a 91% sensitivity and 93% specificity at the cut-off line Aß1-42=44+1.3×tTau. CONCLUSIONS: The level of concordance between FDG-PET and CSF biomarkers was moderate, indicating their complementary value in diagnosing AD. The Aß1-42 and tTau levels in CSF help to predict the patient FDG-PET cortical metabolic status.