Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Yeast ; 39(3): 177-192, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34781413

RESUMEN

Telomere length regulation is essential for cell viability in eukaryotes. While many pathways that affect telomere length are known, we do not yet have a complete understanding of the mechanism of length regulation. To identify new pathways that might regulate telomere length, we carried out a genetic screen in yeast and identified the cyclin-dependent kinase complex Bur1/2 as a regulator of telomere length. Mutations in either BUR1 cyclin-dependent kinase or the associated BUR2 cyclin resulted in short telomeres. This regulation did not function through the known role of BUR1 in regulating histone modification as bur1∆ set2∆ and bur2∆ set2∆ double mutants rescued cell growth but did not rescue the telomere shortening effects. We found that both bur1∆ and bur2∆ set2∆ were also defective in de novo telomere addition, and deletion of SET2 did also not rescue this elongation defect. The Bur1/2 cyclin-dependent kinase regulates transcription of many genes. We found that TLC1 RNA levels were reduced in bur2∆ set2∆ mutants; however, overexpression of TLC1 restored the transcript levels but did not restore de novo telomere elongation or telomere length. These data suggest that the Bur1/2 kinase plays a role in telomere elongation separate from its role in transcription of telomerase components. Dissecting the role of the Bur1/2 kinase pathway at telomeres will help complete our understanding of the complex network of telomere length regulation.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Quinasas Ciclina-Dependientes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Transcripción Genética
2.
Cell Stem Cell ; 18(5): 668-81, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27053300

RESUMEN

Fanconi anemia (FA) is an inherited DNA repair disorder characterized by progressive bone marrow failure (BMF) from hematopoietic stem and progenitor cell (HSPC) attrition. A greater understanding of the pathogenesis of BMF could improve the therapeutic options for FA patients. Using a genome-wide shRNA screen in human FA fibroblasts, we identify transforming growth factor-ß (TGF-ß) pathway-mediated growth suppression as a cause of BMF in FA. Blocking the TGF-ß pathway improves the survival of FA cells and rescues the proliferative and functional defects of HSPCs derived from FA mice and FA patients. Inhibition of TGF-ß signaling in FA HSPCs results in elevated homologous recombination (HR) repair with a concomitant decrease in non-homologous end-joining (NHEJ), accounting for the improvement in cellular growth. Together, our results suggest that elevated TGF-ß signaling contributes to BMF in FA by impairing HSPC function and may be a potential therapeutic target for the treatment of FA.


Asunto(s)
Médula Ósea/patología , Anemia de Fanconi/patología , Células Madre Hematopoyéticas/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Acetaldehído/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Recombinación Homóloga/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutágenos/toxicidad , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/efectos de los fármacos
3.
Mol Cell ; 50(6): 908-18, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23806336

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder characterized by an increased susceptibility to squamous cell cancers. Fifteen FA genes are known, and the encoded proteins cooperate in a common DNA repair pathway. A critical step is the monoubiquitination of the FANCD2 protein, and cells from most FA patients are deficient in this step. How monoubiquitinated FANCD2 suppresses squamous cell cancers is unknown. Here we show that Fancd2-deficient mice are prone to Ras-oncogene-driven skin carcinogenesis, while Usp1-deficient mice, expressing elevated cellular levels of Fancd2-Ub, are resistant to skin tumors. Moreover, Fancd2-Ub activates the transcription of the tumor suppressor TAp63, thereby promoting cellular senescence and blocking skin tumorigenesis. For FA patients, the reduction of FANCD2-Ub and TAp63 protein levels may account for their susceptibility to squamous cell neoplasia. Taken together, Usp1 inhibition may be a useful strategy for upregulating TAp63 and preventing or treating squamous cell cancers in the general non-FA population.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Genes Supresores de Tumor , Fosfoproteínas/genética , Transactivadores/genética , Activación Transcripcional , Animales , Proteínas de Arabidopsis , Proliferación Celular , Células Cultivadas , Senescencia Celular , Daño del ADN , Resistencia a la Enfermedad/genética , Endopeptidasas/deficiencia , Endopeptidasas/genética , Anemia de Fanconi/genética , Femenino , Genes ras , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias de Células Escamosas/inducido químicamente , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/patología , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas , Ubiquitinación
4.
Mol Cell Biol ; 31(12): 2369-79, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21464209

RESUMEN

Telomerase is essential for telomere length maintenance. Mutations in either of the two core components of telomerase, telomerase RNA (TR) or the catalytic protein component telomerase reverse transcriptase (TERT), cause the genetic disorders dyskeratosis congenita, pulmonary fibrosis, and other degenerative diseases. Overexpression of the TERT protein has been reported to have telomere length-independent roles, including regulation of the Wnt signaling pathway. To examine the phenotypes of TERT haploinsufficiency and determine whether loss of function of TERT has effects other than those associated with telomere shortening, we characterized both mTERT⁺/⁻ and mTERT⁻/⁻ mice on the CAST/EiJ genetic background. Phenotypic analysis showed a loss of tissue renewal capacity with progressive breeding of heterozygous mice that was indistinguishable from that of mTR-deficient mice. mTERT⁻/⁻ mice, from heterozygous mTERT⁺/⁻ mouse crosses, were born at the expected Mendelian ratio (26.5%; n = 1,080 pups), indicating no embryonic lethality of this genotype. We looked for, and failed to find, hallmarks of Wnt deficiency in various adult and embryonic tissues, including those of the lungs, kidneys, brain, and skeleton. Finally, mTERT⁻/⁻ cells showed wild-type levels of Wnt signaling in vitro. Thus, while TERT overexpression in some settings may activate the Wnt pathway, loss of function in a physiological setting has no apparent effects on Wnt signaling. Our results indicate that both TERT and TR are haploinsufficient and that their deficiency leads to telomere shortening, which limits tissue renewal. Our studies imply that hypomorphic loss-of-function alleles of hTERT and hTR should cause a similar disease spectrum in humans.


Asunto(s)
Ratones Noqueados , Fenotipo , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Peso Corporal , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , ARN/genética , ARN/metabolismo , Transducción de Señal/fisiología , Tasa de Supervivencia , Síndrome , Telomerasa/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Nucleic Acids Res ; 38(1): 60-71, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19850716

RESUMEN

Telomerase, the essential enzyme that maintains telomere length, contains two core components, TERT and TR. Early studies in yeast and mouse showed that loss of telomerase leads to phenotypes only after several generations, due to telomere shortening. However, recent studies have suggested additional roles for telomerase components in transcription and the response to DNA damage. To examine these potential telomere length maintenance-independent roles of telomerase components, we examined first generation mTR(-/-) and mTERT(-/-) mice with long telomeres. We used gene expression profiling and found no genes that were differentially expressed in mTR(-/-) G1 mice and mTERT(-/-) G1 mice compared with wild-type mice. We also compared the response to DNA damage in mTR(-/-)G1 and mTERT(-/-) G1 mouse embryonic fibroblasts, and found no increase in the response to DNA damage in the absence of either telomerase component compared to wild-type. We conclude that, under physiologic conditions, neither mTR nor mTERT acts as a transcription factor or plays a role in the DNA damage response.


Asunto(s)
Daño del ADN , Expresión Génica , ARN/fisiología , Telomerasa/fisiología , Animales , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , ARN/genética , Telomerasa/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...