Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 861-877, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588918

RESUMEN

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.


Asunto(s)
Automatización/métodos , Sustancias Macromoleculares/química , Diseño de Software , Validación de Programas de Computación , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Modelos Moleculares , Conformación Molecular
2.
J Struct Biol ; 204(2): 301-312, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30107233

RESUMEN

We find that the overall quite good methods used in the CryoEM Model Challenge could still benefit greatly from several strategies for improving local conformations. Our assessments primarily use validation criteria from the MolProbity web service. Those criteria include MolProbity's all-atom contact analysis, updated versions of standard conformational validations for protein and RNA, plus two recent additions: first, flags for cis-nonPro and twisted peptides, and second, the CaBLAM system for diagnosing secondary structure, validating Cα backbone, and validating adjacent peptide CO orientations in the context of the Cα trace. In general, automated ab initio building of starting models is quite good at backbone connectivity but often fails at local conformation or sequence register, especially at poorer than 3.5 Šresolution. However, we show that even if criteria (such as Ramachandran or rotamer) are explicitly restrained to improve refinement behavior and overall validation scores, automated optimization of a deposited structure seldom corrects specific misfittings that start in the wrong local minimum, but just hides them. Therefore, local problems should be identified, and as many as possible corrected, before starting refinement. Secondary structures are confusing at 3-4 Šbut can be better recognized at 6-8 Å. In future model challenges, specific steps being tested (such as segmentation) and the required documentation (such as PDB code of starting model) should each be explicitly defined, so competing methods on a given task can be meaningfully compared. Individual local examples are presented here, to understand what local mistakes and corrections look like in 3D, how they probably arise, and what possible improvements to methodology might help avoid them. At these resolutions, both structural biologists and end-users need meaningful estimates of local uncertainty, perhaps through explicit ensembles. Fitting problems can best be diagnosed by validation that spans multiple residues; CaBLAM is such a multi-residue tool, and its effectiveness is demonstrated.


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas/química , Proteínas/metabolismo , Bases de Datos de Proteínas , Conformación Proteica
3.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 132-142, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533239

RESUMEN

Traditionally, validation was considered to be a final gatekeeping function, but refinement is smoother and results are better if model validation actively guides corrections throughout structure solution. This shifts emphasis from global to local measures: primarily geometry, conformations and sterics. A fit into the wrong local minimum conformation usually produces outliers in multiple measures. Moving to the right local minimum should be prioritized, rather than small shifts across arbitrary borderlines. Steric criteria work best with all explicit H atoms. `Backrub' motions should be used for side chains and `P-perp' diagnostics to correct ribose puckers. A `water' may actually be an ion, a relic of misfitting or an unmodeled alternate. Beware of wishful thinking in modeling ligands. At high resolution, internally consistent alternate conformations should be modeled and geometry in poor density should not be downweighted. At low resolution, CaBLAM should be used to diagnose protein secondary structure and ERRASER to correct RNA backbone. All atoms should not be forced inside density, beware of sequence misalignment, and very rare conformations such as cis-non-Pro peptides should be avoided. Automation continues to improve, but the crystallographer still must look at each outlier, in the context of density, and correct most of them. For the valid few with unambiguous density and something that is holding them in place, a functional reason should be sought. The expectation is a few outliers, not zero.


Asunto(s)
Cristalografía por Rayos X/métodos , Modelos Moleculares , Estudios de Validación como Asunto , Métodos , Proteínas/química , ARN/química
4.
Protein Sci ; 27(1): 293-315, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29067766

RESUMEN

This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore.


Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Lenguajes de Programación , Proteínas/química , Proteínas/genética
5.
J Mol Biol ; 429(9): 1321-1335, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28336403

RESUMEN

Vicinal disulfides between sequence-adjacent cysteine residues are very rare and rather startling structural features which play a variety of functional roles. Typically discussed as an isolated curiosity, they have never received a general treatment covering both cis and trans forms. Enabled by the growing database of high-resolution structures, required deposition of diffraction data, and improved methods for discriminating reliable from dubious cases, we identify and describe distinct protein families with reliably genuine examples of cis or trans vicinal disulfides and discuss their conformations, conservation, and functions. No cis-trans interconversions and only one case of catalytic redox function are seen. Some vicinal disulfides are essential to large, functionally coupled motions, whereas most form the centers of tightly packed internal regions. Their most widespread biological role is providing a rigid hydrophobic contact surface under the undecorated side of a sugar or multiring ligand, contributing an important aspect of binding specificity.


Asunto(s)
Disulfuros/química , Disulfuros/metabolismo , Glicosilación , Proteínas/química , Proteínas/metabolismo , Biología Computacional , Modelos Moleculares , Conformación Proteica
6.
Proteins ; 56(2): 298-309, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15211513

RESUMEN

A new motif of three-dimensional (3D) protein structure is described, called the cis-Pro touch-turn. In this four-residue, three-peptide motif, the central peptide is cis. Residue 2, which precedes the proline, has phi, psi values either in the "prePro region" of the Ramachandran plot near -130 degrees, 75 degrees or in the Lalpha region near +60 degrees, +60 degrees. The Calpha(1)-Calpha(4) distance is 4-5 A and the two flanking peptides lie parallel to one another, making van der Waals contact rather than a hydrogen bond. Apparently, this arrangement is locally unfavorable and therefore rare, usually occurring only if needed for biological function. Of the 12 examples in a 500-protein database, cis-Pro touch-turns are found at the catalytic sites of pectate lyase, Ni-Fe hydrogenase, glucoamylase, xylanase, and opine dehydrogenase and at the primary binding sites of ribonuclease H, type I DNA polymerase, ribotoxin, and phage gene 3 protein. In each of these protein families, the touch-turns serve different roles; their functional importance is supported by conservation and mutagenesis data. In analyzing the conservation patterns of these 3D motifs, new methods for in-depth quality evaluation of the structural bioinformatic data are employed to distinguish between significant exceptions and errors


Asunto(s)
Secuencias de Aminoácidos , Sitios de Unión , Dominio Catalítico , Bases de Datos de Proteínas , Enzimas/química , Modelos Moleculares , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...