Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1160269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182189

RESUMEN

Cutaneous melanoma is relatively common with increasing incidence and significant mortality. While the mainstay of therapy is surgical, patients with stage III and IV disease fare poorer than those with early-stage disease and often benefit from adjuvant therapies. While systemic immunotherapy has changed the landscape of melanoma treatment, for some patients systemic toxicities related to these treatments prohibit successful administration or completion of therapy. Moreover, it is becoming increasingly evident that nodal, regional, and in-transit disease appears to be resistant to systemic immunotherapy relative to responses observed in distant metastatic disease sites. In this scenario, intralesional immunotherapies may offer benefit. In this case series, we describe the use of intralesional IL-2 and BCG at our institution in ten patients with in-transit plus or minus distant cutaneous metastatic melanoma over the last twelve years. All patients received intralesional IL2 and BCG. Both treatments were very well tolerated with only grade 1/2 adverse events. In our cohort, complete clinical response was 60% (6/10), progressive disease in 20% (2/10), and no response in 20% (2/10) of patients. The overall response rate (ORR) was 70%. The median overall survival was 35.5 months and mean overall survival 43 months in this cohort. Herein we further highlight the clinical, histopathological, and radiological course of two complete responders, showing evidence of an abscopal effect with resolution of distant untreated metastasis. Together, this limited data supports the safe and effective use of intralesional IL2 and BCG for the treatment of metastatic or in-transit melanoma in this challenging patient cohort. To our knowledge, this is the first formal study to report on this combination therapy for the treatment of melanoma.

2.
Front Oncol ; 12: 877014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712509

RESUMEN

Breast cancer is the most common non-cutaneous cancer affecting women worldwide and is a major cause of cancer-related morbidity and mortality in females. While many women are diagnosed with early-stage disease, a subset of women may present with isolated cutaneous metastases or recurrent locoregional cutaneous metastatic disease. There is a paucity of evidence for effective treatments for cutaneous breast cancer metastases. Herein, we present a case of hormone receptor negative, HER2 positive cutaneous breast cancer metastasis treated with intralesional IL-2 and topical imiquimod, which was well tolerated with only minor low grade side effects. We also present a brief literature review of immunotherapy for cutaneous breast cancer metastasis to frame the discussion around using minimally invasive local therapies for this disease. Together, this limited data suggests that intralesional IL-2 and imiquimod may be considered as a safe option when treating a patient with cutaneous breast cancer metastases.

3.
Cancers (Basel) ; 13(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072264

RESUMEN

Triple-negative breast cancers (TNBCs) are aggressive, lack targeted therapies and are enriched in cancer stem cells (CSCs). Novel therapies which target CSCs within these tumors would likely lead to improved outcomes for TNBC patients. Long non-coding RNAs (lncRNAs) are potential therapeutic targets for TNBC and CSCs. We demonstrate that lncRNA prostate androgen regulated transcript 1 (PART1) is enriched in TNBCs and in Aldefluorhigh CSCs, and is associated with worse outcomes among basal-like breast cancer patients. Although PART1 is androgen inducible in breast cancer cells, analysis of patient tumors indicates its androgen regulation has minimal clinical impact. Knockdown of PART1 in TNBC cell lines and a patient-derived xenograft decreased cell proliferation, migration, tumor growth, and mammosphere formation potential. Transcriptome analyses revealed that the lncRNA affects expression of hundreds of genes (e.g., myosin-Va, MYO5A; zinc fingers and homeoboxes protein 2, ZHX2). MiRNA 4.0 GeneChip and TaqMan assays identified multiple miRNAs that are regulated by cytoplasmic PART1, including miR-190a-3p, miR-937-5p, miR-22-5p, miR-30b-3p, and miR-6870-5p. We confirmed the novel interaction between PART1 and miR-937-5p. In general, miRNAs altered by PART1 were less abundant than PART1, potentially leading to cell line-specific effects in terms miRNA-PART1 interactions and gene regulation. Together, the altered miRNA landscape induced by PART1 explains most of the protein-coding gene regulation changes (e.g., MYO5A) induced by PART1 in TNBC.

4.
Front Immunol ; 12: 678028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122442

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer worldwide, with ever increasing incidence and mortality. While most patients can be treated successfully with surgical excision, cryotherapy, or radiation therapy, there exist a subset of patients with aggressive cSCC who lack adequate therapies. Among these patients are solid organ transplant recipients who due to their immunosuppression, develop cSCC at a dramatically increased rate compared to the normal population. The enhanced ability of the tumor to effectively undergo immune escape in these patients leads to more aggressive tumors with a propensity to recur and metastasize. Herein, we present a case of aggressive, multi-focal cSCC in a double organ transplant recipient to frame our discussion and current understanding of the immunobiology of cSCC. We consider factors that contribute to the significantly increased incidence of cSCC in the context of immunosuppression in this patient population. Finally, we briefly review current literature describing experience with localized therapies for cSCC and present a strong argument and rationale for consideration of an IL-2 based intra-lesional treatment strategy for cSCC, particularly in this immunosuppressed patient population.


Asunto(s)
Antineoplásicos/efectos adversos , Carcinoma de Células Escamosas/tratamiento farmacológico , Imiquimod/efectos adversos , Huésped Inmunocomprometido , Interleucina-2/efectos adversos , Trasplante de Riñón , Trasplante de Hígado , Neoplasias Cutáneas/tratamiento farmacológico , Receptores de Trasplantes , Administración Cutánea , Anciano , Antineoplásicos/administración & dosificación , Carcinoma de Células Escamosas/inmunología , Rechazo de Injerto/prevención & control , Humanos , Imiquimod/administración & dosificación , Terapia de Inmunosupresión/efectos adversos , Infusiones Intralesiones , Interleucina-2/administración & dosificación , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Cutáneas/inmunología , Resultado del Tratamiento
5.
Mol Oncol ; 15(8): 2046-2064, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932086

RESUMEN

Paclitaxel is a common breast cancer drug; however, some tumors are resistant. The identification of biomarkers for paclitaxel resistance or sensitivity would enable the development of strategies to improve treatment efficacy. A genome-wide in vivo shRNA screen was performed on paclitaxel-treated mice with MDA-MB-231 tumors to identify genes associated with paclitaxel sensitivity or resistance. Gene expression of the top screen hits was associated with tumor response (resistance or sensitivity) among patients who received neoadjuvant chemotherapy containing paclitaxel. We focused our validation on screen hit B-cell lymphoma 6 (BCL6), which is a therapeutic target in cancer but for which no effects on drug response have been reported. Knockdown of BCL6 resulted in increased tumor regression in mice treated with paclitaxel. Similarly, inhibiting BCL6 using a small molecule inhibitor enhanced paclitaxel treatment efficacy both in vitro and in vivo in breast cancer models. Mechanism studies revealed that reduced BCL6 enhances the efficacy of paclitaxel by inducing sustained G1/S arrest, concurrent with increased apoptosis and expression of target gene cyclin-dependent kinase inhibitor 1A. In summary, the genome-wide shRNA knockdown screen has identified BCL6 as a potential targetable resistance biomarker of paclitaxel response in breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-6/genética , ARN Interferente Pequeño
6.
Cancers (Basel) ; 12(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455916

RESUMEN

The incidence of cutaneous melanoma, a highly malignant skin cancer, is increasing yearly. While surgical removal of the tumor is the mainstay of treatment for patients with locally confined disease, those with metastases face uncertainty when it comes to their treatment. As melanoma is a relatively immunogenic cancer, current guidelines suggest using immunotherapies that can rewire the host immune response to target melanoma tumor cells. Intralesional therapy, where immunomodulatory agents are injected directly into the tumor, are an emerging aspect of treatment for in-transit melanoma because of their ability to mitigate severe off-target immune-related adverse events. However, their immunomodulatory mechanisms are poorly understood. In this review, we will summarize and discuss the different intralesional therapies for metastatic melanoma with respect to their clinical outcomes and immune molecular mechanisms.

7.
Cell Death Differ ; 27(1): 363-378, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31197235

RESUMEN

To discover novel therapeutic targets for triple-negative breast cancer (TNBC) and cancer stem cells (CSCs), we screened long non-coding RNAs (lncRNAs) most enriched in TNBCs for high expression in CSCs defined by high Aldefluor activity and associated with worse patient outcomes. This led to the identification of non-coding RNA in the aldehyde dehydrogenase 1 A pathway (NRAD1), also known as LINC00284. Targeting NRAD1 in TNBC tumors using antisense oligonucleotides reduced cell survival, tumor growth, and the number of cells with CSC characteristics. Expression of NRAD1 is regulated by an enzyme that causes Aldefluor activity in CSCs, aldehyde dehydrogenase 1A3 (ALDH1A3) and its product retinoic acid. Cellular fractionation revealed that NRAD1 is primarily nuclear localized, which suggested a potential function in gene regulation. This was confirmed by transcriptome profiling and chromatin isolation by RNA purification, followed by sequencing (ChIRP-seq), which demonstrated that NRAD1 has enriched chromatin interactions among the genes it regulates. Gene Ontology enrichment analysis revealed that NRAD1 regulates expression of genes involved in differentiation and catabolic processes. NRAD1 also contributes to gene expression changes induced by ALDH1A3; thereby, the induction of NRAD1 is a novel mechanism through which ALDH1A3 regulates gene expression. Together, these data identify lncRNA NRAD1 as a downstream effector of ALDH1A3, and a target for TNBCs and CSCs, with functions in cell survival and regulation of gene expression.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Femenino , Humanos , Ratones SCID , ARN Largo no Codificante/antagonistas & inhibidores , Tretinoina/fisiología , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia
8.
Sci Rep ; 9(1): 9414, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263158

RESUMEN

Acute promyelocytic leukemia (APL) is characterized by arrested differentiation of promyelocytes. Patients treated with all-trans retinoic acid (ATRA) alone experience relapse, while patients treated with ATRA and arsenic trioxide (ATO) are often relapse-free. This suggests sustained changes have been elicited by the combination therapy. To understand the lasting effects of the combination therapy, we compared the effects of ATRA and ATO on NB4 and ATRA-resistant NB4-MR2 APL cells during treatment versus post treatment termination. After treatment termination, NB4 cells treated with ATRA or ATO reverted to non-differentiated cells, while combination-treated cells remained terminally differentiated. This effect was diminished in NB4-MR2 cells. This suggests combination treatment induced more permanent changes. Combination treatment induced higher expression of target genes (e.g., transglutaminase 2 and retinoic acid receptor beta), which in NB4 cells was sustained post treatment termination. To determine whether sustained epigenetic changes were responsible, we quantified the enrichment of histone modifications by chromatin immunoprecipitation, and CpG methylation by bisulfite-pyrosequencing. While ATRA and combination treatment induced similar histone acetylation enrichment, combination treatment induced greater demethylation of target genes, which was sustained. Therefore, sustained demethylation of target genes by ATRA and ATO combination treatment is associated with lasting differentiation and gene expression changes.


Asunto(s)
Trióxido de Arsénico/farmacología , Diferenciación Celular/efectos de los fármacos , Desmetilación/efectos de los fármacos , Tretinoina/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Islas de CpG , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Regiones Promotoras Genéticas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transcriptoma/efectos de los fármacos , Transglutaminasas/genética , Transglutaminasas/metabolismo
9.
Cancers (Basel) ; 10(11)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352973

RESUMEN

All-trans retinoic acid (atRA) regulates gene expression and is used to treat acute promyelocytic leukemia. Attempts to use atRA in breast cancer without a stratification strategy have resulted in limited overall effectiveness. To identify biomarkers for the treatment of triple-negative breast cancer (TNBC) with atRA, we characterized the effects of atRA on the tumor growth of 13 TNBC cell lines. This resulted in a range of effects that was not predictable based on previously hypothesized predictors of response, such as the levels of atRA nuclear shuttling proteins fatty acid binding protein 5 (FABP5) and cellular retinoic acid binding protein 2 (CRABP2). Transcriptional profiling revealed that atRA induced distinct gene expression changes in the sensitive versus resistant cell lines that were mostly independent of the presence of retinoic acid response elements (RAREs) or peroxisome proliferator response elements (PPREs). Given the importance of DNA methylation in regulating gene expression, we hypothesized that differential DNA methylation could predict the response of TNBCs to atRA. We identified over 1400 sites that were differentially methylated between atRA resistant and sensitive cell lines. These CpG sites predicted the response of four TNBC patient-derived xenografts to atRA, and we utilized these xenografts to refine the profile and identified that as many as 17% of TNBC patients could benefit from atRA treatment. These data illustrate that differential methylation of specific CpGs may be useful biomarkers for predicting the response of patient tumors to atRA treatment.

10.
Stem Cells ; 36(5): 641-654, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29341428

RESUMEN

Avoiding detection and destruction by immune cells is key for tumor initiation and progression. The important role of cancer stem cells (CSCs) in tumor initiation has been well established, yet their ability to evade immune detection and targeting is only partly understood. To investigate the ability of breast CSCs to evade immune detection, we identified a highly tumorigenic population in a spontaneous murine mammary tumor based on increased aldehyde dehydrogenase activity. We performed tumor growth studies in immunocompetent and immunocompromised mice. In immunocompetent mice, growth of the spontaneous mammary tumor was restricted; however, the Aldefluor+ population was expanded, suggesting inherent resistance mechanisms. Gene expression analysis of the sorted tumor cells revealed that the Aldefluor+ tumor cells has decreased expression of transporter associated with antigen processing (TAP) genes and co-stimulatory molecule CD80, which would decrease susceptibility to T cells. Similarly, the Aldefluor+ population of patient tumors and 4T1 murine mammary cells had decreased expression of TAP and co-stimulatory molecule genes. In contrast, breast CSCs identified by CD44+ CD24- do not have decreased expression of these genes, but do have increased expression of C-X-C chemokine receptor type 4. Decitabine treatment and bisulfite pyrosequencing suggests that DNA hypermethylation contributes to decreased TAP gene expression in Aldefluor+ CSCs. TAP1 knockdown resulted in increased tumor growth of 4T1 cells in immunocompetent mice. Together, this suggests immune evasion mechanisms in breast CSCs are marker specific and epigenetic silencing of TAP1 in Aldefluor+ breast CSCs contributes to their enhanced survival under immune pressure. Stem Cells 2018;36:641-654.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/inmunología , Neoplasias de la Mama/inmunología , Transformación Celular Neoplásica/inmunología , Epigénesis Genética , Evasión Inmune/inmunología , Células Madre Neoplásicas/citología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Ratones , Células Madre Neoplásicas/inmunología
11.
Carcinogenesis ; 38(2): 107-118, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27866156

RESUMEN

The enhanced ability of cancer stem cells (CSCs) to give rise to new tumors suggests that these cells may also have an advantage in evading immune detection and elimination. This tumor-forming ability, combined with the known plasticity of the immune system, which can play both protumorigenic and antitumorigenic roles, has motivated investigations into the interaction between CSCs and the immune system. Herein, we review the interplay between host immunity and CSCs by examining the immune-related mechanisms that favor CSCs and the CSC-mediated expansion of protumorigenic immune cells. Furthermore, we discuss immune cells, such as natural killer cells, that preferentially target CSCs and the strategies used by CSCs to evade immune detection and destruction. An increased understanding of these interactions and the pathways that regulate them may allow us to harness immune system components to create new adjuvant therapies that eradicate CSCs and improve patient survival.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Células Madre Neoplásicas/inmunología , Resistencia a Antineoplásicos/inmunología , Humanos , Inmunidad/efectos de los fármacos , Células Asesinas Naturales/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/fisiología
12.
Oncotarget ; 7(28): 44096-44112, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27286452

RESUMEN

Breast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triple-negative breast cancers (TNBC), and cannot be treated with existing hormone-receptor-targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC. In this study, we focus on retinoic acid receptor responder 1 (RARRES1) as a paradigm to determine if breast cancer subtype dictates protein function and gene expression regulation. Patient tumor dataset analysis and gene expression studies of a 26 cell-line panel, representing the five breast cancer subtypes, demonstrate that RARRES1 expression is greatest in basal-like TNBCs. Cell proliferation and tumor growth assays reveal that RARRES1 is a tumor suppressor in TNBC. Furthermore, gene expression studies, Illumina HumanMethylation450 arrays, and chromatin immunoprecipitation demonstrate that expression of RARRES1 is retained in basal-like breast cancers due to hypomethylation of the promoter. Additionally, expression of the cancer stem cell marker, aldehyde dehydrogenase 1A3, which provides the required ligand (retinoic acid) for RARRES1 transcription, is also specific to the basal-like subtype. We functionally demonstrate that the combination of promoter methylation and retinoic acid signaling dictates expression of tumor suppressor RARRES1 in a subtype-specific manner. These findings provide a precedent for a therapeutically-inducible tumor suppressor and suggest novel avenues of therapeutic intervention for patients with basal-like breast cancer.


Asunto(s)
Aldehído Oxidorreductasas/genética , Neoplasias de la Mama/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Pronóstico , Mapas de Interacción de Proteínas/genética , Interferencia de ARN , Trasplante Heterólogo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...