Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 92(6): 4317-4325, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31985206

RESUMEN

Reusability of sensors is relevant when aiming to decrease variation between measurements, as well as cost and time of analysis. We present an electrochemically assisted surface-enhanced Raman spectroscopy (SERS) platform with the capability to reverse the analyte-surface interaction, without damaging the SERS substrate, allowing for efficient sensor reuse. The platform was used in combination with a sample pretreatment step, when detecting melamine from milk. We found that the electrochemically enhanced analyte-surface interaction results in significant improvement in detection sensitivity, with detection limits (0.01 ppm in PBS and 0.3 ppm in milk) below the maximum allowed levels in food samples. The reversibility of interaction enabled continuous measurement in aqueous solution and a complete quantitative assay on a single SERS substrate.


Asunto(s)
Leche/química , Triazinas/análisis , Animales , Bovinos , Técnicas Electroquímicas , Espectrometría Raman
2.
Biomech Model Mechanobiol ; 19(1): 291-303, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31444593

RESUMEN

In this paper, we present a transparent mechanical stimulation device capable of uniaxial stimulation, which is compatible with standard bioanalytical methods used in cellular mechanobiology. We validate the functionality of the uniaxial stimulation system using human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). The pneumatically controlled device is fabricated from polydimethylsiloxane (PDMS) and provides uniaxial strain and superior optical performance compatible with standard inverted microscopy techniques used for bioanalytics (e.g., fluorescence microscopy and calcium imaging). Therefore, it allows for a continuous investigation of the cell state during stretching experiments. The paper introduces design and fabrication of the device, characterizes the mechanical performance of the device and demonstrates the compatibility with standard bioanalytical analysis tools. Imaging modalities, such as high-resolution live cell phase contrast imaging and video recordings, fluorescent imaging and calcium imaging are possible to perform in the device. Utilizing the different imaging modalities and proposed stretching device, we demonstrate the capability of the device for extensive further studies of hiPSC-CMs. We also demonstrate that sarcomere structures of hiPSC-CMs organize and orient perpendicular to uniaxial strain axis and thus express more maturated nature of cardiomyocytes.


Asunto(s)
Biofisica/instrumentación , Miocitos Cardíacos/citología , Forma de la Célula/efectos de los fármacos , Dimetilpolisiloxanos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Estrés Mecánico
3.
ACS Sens ; 3(12): 2492-2498, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30525481

RESUMEN

Practical implementation of surfaced enhanced Raman spectroscopy (SERS) sensing is hindered by complexity of real-life samples, which often requires long and costly pretreatment and purification. Here, we present a novel nanopillar-assisted SERS chromatography (NPC-SERS) method for simultaneous quantitation of target molecules and analysis of complex, multicomponent fluids, e.g., human urine spiked with a model drug paracetamol (PAR). Gold-coated silicon nanopillar (AuNP) SERS substrates and a centrifugal microfluidic platform are tactfully combined, which allows (i) a precise and fully automated sample manipulation and (ii) spatial separation of different molecular species on the AuNP substrate. The NPC-SERS technique provides a novel approach for wetting the stationary phase (AuNP) using the "wicking effect", and thus minimizes dilution of analytes. Separation of PAR and the main human urine components (urea, uric acid, and creatinine) has been demonstrated. Quantitative detection of PAR with ultrawide linear dynamic range (0-500 ppm) is achieved by analyzing the spreading profiles of PAR on the AuNP surface. NPC-SERS transforms SERS into a sensing technique with general applicability, facilitating rapid and quantitative detection of analytes in complex biofluids, such as saliva, blood, and urine.


Asunto(s)
Cromatografía/métodos , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Acetaminofén/orina , Acción Capilar , Creatinina/orina , Oro/química , Humanos , Microfluídica/métodos , Silicio/química , Urea/orina , Ácido Úrico/orina
4.
ACS Appl Mater Interfaces ; 10(43): 37417-37425, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30277378

RESUMEN

To enable affordable detection and diagnostic, there is a need for low-cost and mass producible miniaturized sensing platforms. We present a fully polymeric microfluidic lab-on-a-chip device with integrated gold (Au)-capped nanocones for sensing applications based on surface-enhanced Raman spectroscopy (SERS). All base components of the device were fabricated via injection molding (IM) and can be easily integrated using ultrasonic welding. The SERS sensor array, embedded in the bottom of a fluidic channel, was created by evaporating Au onto IM nanocone structures, resulting in densely packed Au-capped SERS active nanostructures. Using a Raman active model analyte, trans-1,2-bis-(4-pyridyl)-ethylene, we found a surface-averaged SERS enhancement factor of ∼5 × 106 with a relative standard deviation of 14% over the sensor area (2 × 2 mm2), and a 18% signal variation among substrates. This reproducible fabrication method is cost-effective, less time consuming, and allows mass production of fully integrated polymeric, microfluidic systems with embedded high-density and high-aspect ratio SERS sensor.

5.
J Mech Behav Biomed Mater ; 72: 38-48, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28448920

RESUMEN

Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentiation and mechanical properties of hASCs. Tailor-made, pneumatic cell stretching devices were used to expose hASCs to cyclic equiaxial stretching in osteogenic medium. Cell attachment and focal adhesions were visualised using immunocytochemical vinculin staining on days 3 and 6, and the proliferation and alkaline phosphatase activity, as a sign of early osteogenic differentiation, were analysed on days 0, 6 and 10. Furthermore, the mechanical properties of hASCs, in terms of apparent Young's modulus and normalised contractility, were obtained using a combination of atomic force microscopy based indentation and computational approaches. Our results indicated that cyclic equiaxial stretching delayed proliferation and promoted osteogenic differentiation of hASCs. Stretching also reduced cell size and intensified focal adhesions and actin cytoskeleton. Moreover, cell stiffening was observed during osteogenic differentiation and especially under mechanical stimulation. These results suggest that cyclic equiaxial stretching modifies cell morphology, focal adhesion formation and mechanical properties of hASCs. This could be exploited to enhance osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Adhesiones Focales/fisiología , Osteogénesis , Células Madre/citología , Tejido Adiposo/citología , Células Cultivadas , Humanos
6.
Lab Chip ; 13(10): 1930-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23580034

RESUMEN

Catalytic microjet bubble-propelled engines have attracted a large amount of interest for their potential applications in biomedicine, environmental sciences and natural resources discovery. One of the current efforts in this field is focused on the search of biocompatible fuels. However, only a minimal amount of effort has been made to assess the challenges facing the movement of such devices in a real world environment, especially with regards to the components of blood and their interactions with the catalytic microjets. Herein, we will show the limitations on the movement of catalytic microengines prepared via the rolled-up, as well as the templated-electrochemical deposition method, in an artificial blood sample, due to the presence of two main components of animal blood: the cellular component (red blood cells in this study) and serum. We will show that the motion of catalytic microjets is only possible in highly diluted dispersions of the red blood cells and serum. This finding has a profound implication on the development of the whole field, where the components found in real environments have to be considered carefully, and issues arising from the presence of such components have to be resolved prior to deploying these devices in real world applications.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Sustitutos Sanguíneos/química , Sustitutos Sanguíneos/metabolismo , Catálisis , Eritrocitos/citología , Eritrocitos/metabolismo , Humanos , Suero/química , Suero/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo
7.
J Am Chem Soc ; 133(38): 14860-3, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21848337

RESUMEN

There is a great interest in reducing the toxicity of the fuel used to self-propel artificial nanomachines. Therefore, a method to increase the efficiency of the conversion of chemicals into mechanical energy is desired. Here, we employed temperature control to increase the efficiency of microjet engines while simultaneously reducing the amount of peroxide fuel needed. At physiological temperatures, i.e. 37 °C, only 0.25% H(2)O(2) is needed to propel the microjets at 140 µm s(-1), which corresponds to three body lengths per second. In addition, at 5% H(2)O(2), the microjets acquire superfast speeds, reaching 10 mm s(-1). The dynamics of motion is altered when the speed is increased; i.e., the motion deviates from linear to curvilinear trajectories. The observations are modeled empirically.


Asunto(s)
Suministros de Energía Eléctrica , Peróxido de Hidrógeno/química , Temperatura , Animales , Catálisis , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Ratones , Células 3T3 NIH , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...