Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 116(3): 890-908, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34184334

RESUMEN

The lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi. The present study identified a receptor in T. cruzi, which was predicted to bind to PAF, and found it to be homologous to members of the progestin and adiponectin family of receptors (PAQRs). We constructed a three-dimensional model of the T. cruzi PAQR (TcPAQR) and performed molecular docking to predict the interactions of the TcPAQR model with C16:0 PAF and C18:1 LPC. We knocked out T. cruzi PAQR (TcPAQR) gene and confirmed the identity of the expressed protein through immunoblotting and immunofluorescence assays using an anti-human PAQR antibody. Wild-type and knockout (KO) parasites were also used to investigate the in vitro cell differentiation and interactions with peritoneal mouse macrophages; TcPAQR KO parasites were unable to react to C16:0 PAF or C18:1 LPC. Our data are highly suggestive that PAF and LPC act through TcPAQR in T. cruzi, triggering its cellular differentiation and ability to infect macrophages.


Asunto(s)
Lisofosfatidilcolinas/metabolismo , Factor de Activación Plaquetaria/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Enfermedad de Chagas/parasitología , Técnicas de Inactivación de Genes/métodos , Interacciones Huésped-Parásitos , Humanos , Lisofosfatidilcolinas/química , Macrófagos , Ratones , Simulación del Acoplamiento Molecular , Filogenia , Factor de Activación Plaquetaria/química , Conformación Proteica , Proteínas Protozoarias/química , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Trypanosoma cruzi/química
2.
Acta Parasitol ; 65(1): 108-117, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31755068

RESUMEN

BACKGROUND: Protozoa are distantly related to vertebrates but present some features of higher eukaryotes, making them good model systems for studying the evolution of basic processes such as the cell cycle. Herpetomonas samuelpessoai is a trypanosomatid parasite isolated from the hemipteran insect Zelus leucogrammus. Lysophosphatidylcholine (LPC) is implicated in the transmission and establishment of Chagas disease, whose etiological agent is Trypanosoma cruzi. LPC is synthesized by T. cruzi and its vectors, the hemipteran Rhodnius prolixus and Triatoma infestans. Platelet-activating factor (PAF), a phospholipid with potent and diverse physiological and pathophysiological actions, is a powerful inducer of cell differentiation in Herpetomonas muscarum muscarum and T. cruzi. The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the 2-ester bond of 3-sn-phosphoglyceride, transforming phosphatidylcholine (PC) into LPC. METHODS: In this study, we evaluated cellular differentiation, PLA2 activity and protein kinase CK2 activity of H. samuelpessoai in the absence and in the presence of LPC and PAF. RESULTS: We demonstrate that both PC and LPC promoted a twofold increase in the cellular differentiation of H. samuelpessoai, through CK2, with a concomitant inhibition of its cell growth. Intrinsic PLA2 most likely directs this process by converting PC into LPC. CONCLUSIONS: Our results suggest that the actions of LPC on H. samuelpessoai occur upon binding to a putative PAF receptor and that the protein kinase CK2 plays a major role in this process. Cartoon depicting a model for the synthesis and functions of LPC in Herpetomonas samuelpessoai, based upon our results regarding the role of LPC on the cell biology of Trypanosoma cruzi [28-32]. N nucleus, k kinetoplast, PC phosphatidylcholine, LPC lysophosphatidylcholine, PLA2 phospholipase A2, PAFR putative PAF receptor in trypanosomatids [65], CK2 protein kinase CK2 [16].


Asunto(s)
Quinasa de la Caseína II/metabolismo , Diferenciación Celular , Lisofosfatidilcolinas/metabolismo , Redes y Vías Metabólicas , Trypanosomatina/fisiología , Animales , Diclororribofuranosil Benzoimidazol/farmacología , Inhibidores Enzimáticos/farmacología , Hemípteros/parasitología , Fosfolipasas A2/metabolismo , Triazoles/farmacología , Trypanosomatina/efectos de los fármacos
3.
Acta Trop ; 164: 69-76, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27591136

RESUMEN

The most commonly used drugs against visceral leishmaniasis are based on pentavalent antimonial compounds, which have played a fundamental role in therapy for over 70 years. However, the treatment is painful and has severe toxic side effects that can be fatal. Antimonial resistance is spreading and reaching alarming proportions. Linalool and eugenol have been shown to kill Leishmania (L.) amazonensis and Trypanosoma cruzi at low doses. In the present study, we demonstrate the effects of linalool and eugenol, components of essential oils, on Leishmania (L.) infantum chagasi, one of the causative agents of visceral leishmaniasis. We compared the effects of those compounds to the effects of glucantime, a positive control. In L. infantum chagasi killing assays, the LD50 for eugenol was 220µg/ml, and that for linalool was 550µg/ml. L. infantum chagasi was added to cultures of peritoneal mouse macrophages for four hours prior to drug treatment. Eugenol and linalool significantly decreased the number of parasites within the macrophages. Eugenol and linalool enhanced the activities of the L. infantum chagasi protein kinases PKA and PKC. Linalool also decreased L. infantum chagasi oxygen consumption. In conclusion, both linalool and eugenol promoted a decrease in the proliferation and viability of L. infantum chagasi. These effects were more pronounced during the interaction between the parasites and peritoneal mouse macrophages.


Asunto(s)
Eugenol/farmacología , Insecticidas/farmacología , Leishmania infantum/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos Acíclicos , Animales , Macrófagos Peritoneales/parasitología , Ratones Endogámicos BALB C
4.
Exp Parasitol ; 169: 111-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27531705

RESUMEN

The protozoan parasite Leishmania amazonensis is the etiological agent of cutaneous leishmaniasis. During its life cycle, the flagellated metacyclic promastigote forms are transmitted to vertebrate hosts by sandfly bites, and they develop into amastigotes inside macrophages, where they multiply. L. amazonensis possesses a bifunctional enzyme, called 3'-nucleotidase/nuclease (3'NT/NU), which is able to hydrolyze extracellular 3'-monophosphorylated nucleosides and nucleic acids. 3'NT/NU plays an important role in the generation of extracellular adenosine and has been described as a key enzyme in the acquisition of purines by trypanosomatids. Furthermore, it has been observed that 3'NT/NU also plays a valuable role in the establishment of parasitic infection. In this context, this study aimed to investigate the modulation of the 3'-nucleotidase (3'NT) activity of L. amazonensis by several nucleotides. It was observed that 3'NT activity is inhibited by micromolar concentrations of guanosine and guanine nucleotides. The inhibition promoted by 5'-GMP on the 3'NT activity of L. amazonensis is reversible and uncompetitive because the addition of the inhibitor decreased the kinetic parameters Km and Vmax. Finally, we found that the addition of 5'-GMP is able to reverse the stimulation promoted by 3'-AMP in a macrophage-parasite interaction assay. The determination of compounds that can inhibit the 3'NT activity of Leishmania is very important because this enzyme does not occur in mammals, making it a potential therapeutic target.


Asunto(s)
Guanosina Difosfato/farmacología , Guanosina Monofosfato/farmacología , Guanosina Trifosfato/farmacología , Leishmania mexicana/enzimología , Nucleotidasas/antagonistas & inhibidores , Animales , Cinética , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Ratones , Nucleotidasas/metabolismo , Células RAW 264.7
5.
PLoS One ; 10(8): e0134432, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266938

RESUMEN

In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.


Asunto(s)
Proteínas del Citoesqueleto/genética , Flagelos/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Leishmaniasis/genética , Macrófagos/parasitología , Proteínas Protozoarias/genética , Animales , Citocinesis/genética , Flagelos/parasitología , Leishmania mexicana/genética , Leishmania mexicana/patogenicidad , Leishmaniasis/parasitología , Leishmaniasis/patología , Ratones , Mutación
6.
PLoS Negl Trop Dis ; 8(8): e3077, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101628

RESUMEN

BACKGROUND: Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions.


Asunto(s)
Lisofosfatidilcolinas/química , Factor de Activación Plaquetaria/química , Trypanosoma cruzi/química , Animales , Azepinas/farmacología , Lisofosfatidilcolinas/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/química , Conejos , Receptores Acoplados a Proteínas G/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triazoles/farmacología
7.
J Biol Chem ; 288(31): 22721-33, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23766511

RESUMEN

The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.


Asunto(s)
Flagelos/metabolismo , Glucosa/metabolismo , Leishmania mexicana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cromatografía de Afinidad , Cartilla de ADN , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Protozoarias/química , Homología de Secuencia de Aminoácido
8.
Exp Parasitol ; 129(3): 277-83, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21827749

RESUMEN

Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.


Asunto(s)
Leishmania mexicana/enzimología , Leishmania mexicana/patogenicidad , Macrófagos Peritoneales/parasitología , Nucleotidasas/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Animales , Cricetinae , Femenino , Interacciones Huésped-Parásitos , Humanos , Concentración de Iones de Hidrógeno , Leishmania mexicana/clasificación , Ratones , Ratones Endogámicos BALB C , Nucleotidasas/química , Nucleotidasas/genética , Filogenia , Alineación de Secuencia , Virulencia
9.
Exp Parasitol ; 127(3): 702-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21111737

RESUMEN

In this work we showed that living cells of Leishmania chagasi was able to hydrolyse 3'AMP 10 times more than 5'AMP. When parasites were grown in a low phosphate concentration (2 mM) the cellular proliferation decreased by 50% compared to cells grown in the presence of a high phosphate concentration (80 mM). However, the ecto-3'nucleotidase activity was 2-fold higher when L. chagasi was grown in a low phosphate concentration. This modulation observed on ecto-3'nucleotidase activity was not observed on ecto-5'nucleotidase activity. These results suggest that low concentration of Pi in the culture medium modulates ecto-3'nucleotidase activity that may lead to modulation of important processes for the cell. Interestingly, the macrophage-parasite interaction increased by 45% when L. chagasi were grown at low phosphate concentration compared to the parasites grown in the presence of high phosphate source. Altogether, the results described here suggest that 3'nucleotidase activity modulated by external stimuli, Pi concentration, could be involved on parasite-macrophage interaction.


Asunto(s)
Leishmania infantum/enzimología , Macrófagos Peritoneales/parasitología , Nucleotidasas/metabolismo , Fosfatos/farmacología , 5'-Nucleotidasa/efectos de los fármacos , 5'-Nucleotidasa/metabolismo , Animales , Femenino , Interacciones Huésped-Patógeno , Leishmania infantum/efectos de los fármacos , Leishmania infantum/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Nucleotidasas/efectos de los fármacos
10.
Acta Trop ; 111(3): 247-54, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19433049

RESUMEN

Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.


Asunto(s)
Quinasa de la Caseína II/biosíntesis , Leishmania tropica/enzimología , Factor de Activación Plaquetaria/metabolismo , Proteínas Protozoarias/biosíntesis , Animales , Células Cultivadas , Femenino , Regulación Enzimológica de la Expresión Génica , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos BALB C
11.
Infect Immun ; 76(12): 5543-52, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18794282

RESUMEN

Trypanosoma cruzi, the etiological agent of Chagas disease, is transmitted by bug feces deposited on human skin during a blood meal. However, parasite infection occurs through the wound produced by insect mouthparts. Saliva of the Triatominae bug Rhodnius prolixus is a source of lysophosphatidylcholine (LPC). Here, we tested the role of both triatomine saliva and LPC on parasite transmission. We show that vector saliva is a powerful inducer of cell chemotaxis. A massive number of inflammatory cells were found at the sites where LPC or saliva was inoculated into the skin of mice. LPC is a known chemoattractant for monocytes, but neutrophil recruitment induced by saliva is LPC independent. The preincubation of peritoneal macrophages with saliva or LPC increased fivefold the association of T. cruzi with these cells. Moreover, saliva and LPC block nitric oxide production by T. cruzi-exposed macrophages. The injection of saliva or LPC into mouse skin in the presence of the parasite induces an up-to-sixfold increase in blood parasitemia. Together, our data suggest that saliva of the Triatominae enhances T. cruzi transmission and that some of its biological effects are attributed to LPC. This is a demonstration that a vector-derived lysophospholipid may act as an enhancing factor of Chagas disease.


Asunto(s)
Enfermedad de Chagas/transmisión , Inmunosupresores/inmunología , Insectos Vectores/parasitología , Lisofosfatidilcolinas/inmunología , Rhodnius/parasitología , Saliva/inmunología , Animales , Enfermedad de Chagas/inmunología , Quimiotaxis de Leucocito/inmunología , Cromatografía en Capa Delgada , Citocinas/biosíntesis , Humanos , Lisofosfatidilcolinas/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Infiltración Neutrófila/inmunología , Óxido Nítrico/biosíntesis , Parasitemia/inmunología , Saliva/química , Trypanosoma cruzi
12.
Biochem Biophys Res Commun ; 293(5): 1358-63, 2002 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-12054663

RESUMEN

Herpetomonas muscarum muscarum is a flagellate parasite of the family Trypanosomatidae, whose cell differentiation can be triggered by the lipid mediator, PAF. In this study we demonstrate for the first time that PAF effect relies on the activation of casein kinase 2 (CK2). The classical antagonist of PAF receptor, WEB 2086, abrogated PAF-enhanced CK2 activity. CK2 activation by PAF was also inhibited when parasite extracts were assayed in the presence of modulators of PKC, MAPK, and both Ser/Thr and Tyr phosphatases. Finally, a cell permeable inhibitor of CK2 (DRB) suppressed PAF-induced cell differentiation in a dose-dependent manner.


Asunto(s)
Factor de Activación Plaquetaria/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Trypanosomatina/enzimología , Animales , Western Blotting , Quinasa de la Caseína II , Diferenciación Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Fosforilación , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...