Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L694-L699, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014068

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by lung extracellular matrix (ECM) remodeling that contributes to obstruction. This is driven, in part by extracellular vesicles (EVs) from activated neutrophils (PMNs), which express on their surface an α-1 antitrypsin (AAT) insensitive form of neutrophil elastase (NE). These EVs are predicted to bind to collagen fibers via Mac-1 integrins, during which time NE can enzymatically degrade the collagen. Protamine sulfate (PS), a cationic compound used safely for decades in humans, has been shown, in vitro, to dissociate this NE from the EV surface, rendering it AAT-sensitive. In addition, a nonapeptide inhibitor, MP-9, has been shown to prevent EV association with collagen. We sought to test whether PS, MP-9, or a combination of the two could effectively prevent NE+ EV-driven ECM remodeling in an animal COPD model. EVs were preincubated with PBS, protamine sulfate (25 µM), MP-9 (50 µM), or a combination of PS and MP-9. These were delivered intratracheally to anesthetized female 10- to 12-wk-old A/J mice for a 7-day time period. One group of mice was euthanized and lungs sectioned for morphometry, and the other group was used for live pulmonary function testing. The effect of alveolar destruction by activated neutrophil EVs was abrogated by pretreatment with PS or MP-9. However, in pulmonary function tests, only the PS groups (and combined PS/MP-9 groups) returned pulmonary function to near-control levels. These data presented here offer an insight into the effective use of PS in therapeutic setting for EV-derived alveolar damage.NEW & NOTEWORTHY Protamine sulfate facilitates the removal of neutrophil elastase (NE) from the surface of extracellular vesicles from activated neutrophils. This "free" NE is no longer protected from inhibition by its endogenous anti-protease, α-1-anti-trypsin. This function of protamine sulfate highlights it as a potential therapeutic strategy for COPD, which may attenuate the disease process.


Asunto(s)
Enfisema , Vesículas Extracelulares , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Femenino , Ratones , Animales , Elastasa de Leucocito/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Colágeno/metabolismo , Vesículas Extracelulares/metabolismo
2.
Front Med (Lausanne) ; 10: 1118024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968839

RESUMEN

Objectives: Our objective was to examine coronary endothelial and myocardial programming in patients with severe COVID-19 utilizing digital spatial transcriptomics. Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has well-established links to thrombotic and cardiovascular events. Endothelial cell infection was initially proposed to initiate vascular events; however, this paradigm has sparked growing controversy. The significance of myocardial infection also remains unclear. Methods: Autopsy-derived cardiac tissue from control (n = 4) and COVID-19 (n = 8) patients underwent spatial transcriptomic profiling to assess differential expression patterns in myocardial and coronary vascular tissue. Our approach enabled transcriptional profiling in situ with preserved anatomy and unaltered local SARS-CoV-2 expression. In so doing, we examined the paracrine effect of SARS-CoV-2 infection in cardiac tissue. Results: We observed heterogeneous myocardial infection that tended to colocalize with CD31 positive cells within coronary capillaries. Despite these differences, COVID-19 patients displayed a uniform and unique myocardial transcriptional profile independent of local viral burden. Segmentation of tissues directly infected with SARS-CoV-2 showed unique, pro-inflammatory expression profiles including upregulated mediators of viral antigen presentation and immune regulation. Infected cell types appeared to primarily be capillary endothelial cells as differentially expressed genes included endothelial cell markers. However, there was limited differential expression within the endothelium of larger coronary vessels. Conclusion: Our results highlight altered myocardial programming during severe COVID-19 that may in part be associated with capillary endothelial cells. However, similar patterns were not observed in larger vessels, diminishing endotheliitis, and endothelial activation as key drivers of cardiovascular events during COVID-19.

3.
bioRxiv ; 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36203548

RESUMEN

Objectives: Our objective was to examine coronary endothelial and myocardial programming in patients with severe COVID-19 utilizing digital spatial transcriptomics. Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has well-established links to thrombotic and cardiovascular events. Endothelial cell infection was initially proposed to initiate vascular events; however, this paradigm has sparked growing controversy. The significance of myocardial infection also remains unclear. Methods: Autopsy-derived cardiac tissue from control (n = 4) and COVID-19 (n = 8) patients underwent spatial transcriptomic profiling to assess differential expression patterns in myocardial and coronary vascular tissue. Our approach enabled transcriptional profiling in situ with preserved anatomy and unaltered local SARS-CoV-2 expression. In so doing, we examined the paracrine effect of SARS-CoV-2 infection in cardiac tissue. Results: We observed heterogeneous myocardial infection that tended to colocalize with CD31 positive cells within coronary capillaries. Despite these differences, COVID-19 patients displayed a uniform and unique myocardial transcriptional profile independent of local viral burden. Segmentation of tissues directly infected with SARS-CoV-2 showed unique, pro-inflammatory expression profiles including upregulated mediators of viral antigen presentation and immune regulation. Infected cell types appeared to primarily be capillary endothelial cells as differentially expressed genes included endothelial cell markers. However, there was limited differential expression within the endothelium of larger coronary vessels. Conclusions: Our results highlight altered myocardial programming during severe COVID-19 that may in part be associated with capillary endothelial cells. However, similar patterns were not observed in larger vessels, diminishing endotheliitis and endothelial activation as key drivers of cardiovascular events during COVID-19. Condensed Abstract: SARS-CoV-2 is linked to thrombotic and cardiovascular events; however, the mechanism remains uncertain. Our objective was to examine coronary endothelial and myocardial programming in patients with severe COVID-19 utilizing digital spatial transcriptomics. Autopsy-derived coronary arterial and cardiac tissues from control and COVID-19 patients underwent spatial transcriptomic profiling. Our approach enabled transcriptional profiling in situ with preserved anatomy and unaltered local SARS-CoV-2 expression. We observed unique, pro-inflammatory expression profiles among all COVID-19 patients. While heterogeneous viral expression was noted within the tissue, SARS-CoV-2 tended to colocalize with CD31 positive cells within coronary capillaries and was associated with unique expression profiles. Similar patterns were not observed in larger coronary vessels. Our results highlight altered myocardial programming during severe COVID-19 that may in part be associated with capillary endothelial cells. Such results diminish coronary arterial endotheliitis and endothelial activation as key drivers of cardiovascular events during COVID-19 infection. LIST OF HIGHLIGHTS: SARS-CoV-2 has variable expression patterns within the myocardium of COVID-19 patientsSARS-CoV-2 infection induces a unique myocardial transcriptional programming independent of local viral burdenSARS-CoV-2 myocarditis is predominantly associated with capillaritis, and tissues directly infected with SARS-CoV-2 have unique, pro-inflammatory expression profilesDiffuse endothelial activation of larger coronary vessels was absent, diminishing large artery endotheliitis as a significant contributor to cardiovascular events during COVID-19 infection.

4.
Immun Inflamm Dis ; 10(6): e634, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634961

RESUMEN

INTRODUCTION: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS: Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS: TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS: According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuencia de Bases , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Medicina de Precisión , SARS-CoV-2/genética , Estados Unidos/epidemiología
5.
JCI Insight ; 7(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35077395

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a debilitating chronic disease and the third-leading cause of mortality worldwide. It is characterized by airway neutrophilia, promoting tissue injury through release of toxic mediators and proteases. Recently, it has been shown that neutrophil-derived extracellular vesicles (EVs) from lungs of patients with COPD can cause a neutrophil elastase-dependent (NE-dependent) COPD-like disease upon transfer to mouse airways. However, in vivo preclinical models elucidating the impact of EVs on disease are lacking, delaying opportunities for therapeutic testing. Here, we developed an in vivo preclinical mouse model of lung EV-induced COPD. EVs from in vivo LPS-activated mouse neutrophils induced COPD-like disease in naive recipients through an α-1 antitrypsin-resistant, NE-dependent mechanism. Together, these results show a key pathogenic and mechanistic role for neutrophil-derived EVs in a mouse model of COPD. Broadly, the in vivo model described herein could be leveraged to develop targeted therapies for severe lung disease.


Asunto(s)
Vesículas Extracelulares/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfisema Pulmonar/complicaciones , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo
6.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33830084

RESUMEN

Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , COVID-19 , Cefadroxilo/farmacología , Inflamación/metabolismo , Oligopéptidos , Prolina/análogos & derivados , Simportadores , Animales , Antibacterianos/farmacología , Transporte Biológico Activo/inmunología , COVID-19/inmunología , COVID-19/metabolismo , Células Cultivadas , Factores Quimiotácticos/inmunología , Factores Quimiotácticos/farmacología , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Matriz Extracelular , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ratones , Oligopéptidos/inmunología , Oligopéptidos/farmacología , Prolina/inmunología , Prolina/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo
7.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33571164

RESUMEN

Altered inflammation and tissue remodeling are cardinal features of cardiovascular disease and cardiac transplant rejection. Neutrophils have increasingly been understood to play a critical role in acute rejection and early allograft failure; however, discrete mechanisms that drive this damage remain poorly understood. Herein, we demonstrate that early acute cardiac rejection increases allograft prolyl endopeptidase (PE) in association with de novo production of the neutrophil proinflammatory matrikine proline-glycine-proline (PGP). In a heterotopic murine heart transplant model, PGP production and PE activity were associated with early neutrophil allograft invasion and allograft failure. Pharmacologic inhibition of PE with Z-Pro-prolinal reduced PGP, attenuated early neutrophil graft invasion, and reduced proinflammatory cytokine expression. Importantly, these changes helped preserve allograft rejection-free survival and function. Notably, within 2 independent patient cohorts, both PGP and PE activity were increased among patients with biopsy-proven rejection. The observed induction of PE and matrikine generation provide a link between neutrophilic inflammation and cardiovascular injury, represent a potential target to reduce allogenic immune responses, and uncover a mechanism of cardiovascular disease that has been previously unrecognized to our knowledge.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Corazón , Neutrófilos/inmunología , Prolil Oligopeptidasas/metabolismo , Adulto , Anciano , Animales , Vías Clínicas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
8.
Respir Res ; 20(1): 254, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718676

RESUMEN

BACKGROUND: Pulmonary and systemic inflammation are central features of chronic obstructive pulmonary disease (COPD). Previous studies have demonstrated relationships between biologically active extracellular matrix components, or matrikines, and COPD pathogenesis. We studied the relationships between the matrikine acetyl-proline-glycine-proline (AcPGP) in sputum and plasma and clinical features of COPD. METHODS: Sputum and plasma samples were obtained from COPD participants in the SPIROMICS cohort at enrollment. AcPGP was isolated using solid phase extraction and measured by mass spectrometry. Demographics, spirometry, quality of life questionnaires, and quantitative computed tomography (CT) imaging with parametric response mapping (PRM) were obtained at baseline. Severe COPD exacerbations were recorded at 1-year of prospective follow-up. We used linear and logistic regression models to measure associations between AcPGP and features of COPD, and Kaplan-Meier analyses to measure time-to-first severe exacerbation. RESULTS: The 182 COPD participants in the analysis were 66 ± 8 years old, 62% male, 84% White race, and 39% were current smokers. AcPGP concentrations were 0.61 ± 1.89 ng/mL (mean ± SD) in sputum and 0.60 ± 1.13 ng/mL in plasma. In adjusted linear regression models, sputum AcPGP was associated with FEV1/FVC, spirometric GOLD stage, PRM-small airways disease, and PRM-emphysema. Sputum AcPGP also correlated with severe AECOPD, and elevated sputum AcPGP was associated with shorter time-to-first severe COPD exacerbation. In contrast, plasma AcPGP was not associated with symptoms, pulmonary function, or severe exacerbation risk. CONCLUSIONS: In COPD, sputum but not plasma AcPGP concentrations are associated with the severity of airflow limitation, small airways disease, emphysema, and risk for severe AECOPD at 1-year of follow-up. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01969344 (SPIROMICS).


Asunto(s)
Glicina/sangre , Prolina/sangre , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Espirometría/métodos , Esputo/metabolismo , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Esputo/química
9.
JCI Insight ; 4(23)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31661469

RESUMEN

Pulmonary drug delivery presents a unique opportunity to target lower airway inflammation, which is often characterized by the massive recruitment of neutrophils from blood. However, specific therapies are lacking modulation of airway neutrophil function, and difficult challenges must be overcome to achieve therapeutic efficacy against pulmonary inflammation, notably drug hydrophobicity, mucociliary and macrophage-dependent clearance, and high extracellular protease burden. Here, we present a multistage, aerodynamically favorable delivery platform that uses extracellular proteolysis to its advantage to deliver nanoparticle-embedded hydrophobic drugs to neutrophils within the lower airways. Our design consists of a self-regulated nanoparticle-in-microgel system, in which microgel activation is triggered by extracellular elastase (degranulated by inflammatory neutrophils), and nanoparticles are loaded with Nexinhib20, a potent neutrophil degranulation inhibitor. Successful in vivo delivery of Nexinhib20 to the airways and into neutrophils promoted resolution of the inflammatory response by dampening neutrophil recruitment and degranulation, proinflammatory cytokine production in both airway and systemic compartments, as well as the presence of neutrophil-derived pathological extracellular vesicles in the lung fluid. Our findings showcase a new platform that overcomes challenges in pulmonary drug delivery and allows customization to match the proteolytic footprint of given diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Infiltración Neutrófila , Neutrófilos/metabolismo , Neumonía/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Microgeles , Nanopartículas , Activación Neutrófila/efectos de los fármacos , Elastasa Pancreática , Neumonía/patología
10.
Am J Respir Cell Mol Biol ; 61(5): 560-566, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30958968

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide and is characterized by an excessive airway neutrophilic response. The neutrophil chemoattractant proline-glycine-proline (PGP) and its more potent acetylated form (acPGP) have been found to be elevated in patients with COPD and act via CXCR2. Here, we investigated the impact of neutralizing PGP peptides in a murine model for emphysema. The PGP-neutralizing peptide l-arginine-threonine-arginine (RTR) was used first in a 6-week model of cigarette smoke exposure, where it attenuated lung inflammation. Then, in a model of chronic smoke exposure, mice were exposed to cigarette smoke and RTR treatment was initiated after 10 weeks of smoke exposure. This treatment was continued together with smoke exposure for another 13 weeks, for a total of 23 weeks of smoke exposure. RTR significantly inhibited neutrophil and macrophage influx into the lungs in the 6-week model of exposure. RTR also attenuated the development of emphysema, normalized lung volumes, and reduced right ventricular hypertrophy in the chronic exposure model. Murine epithelia expressed CXCR2, and this expression was increased after smoke exposure. In vitro, human bronchial epithelial cells also demonstrated robust expression of CXCR2, and stimulation of primary human bronchial epithelial cells with acPGP led to increased release of MMP-9 and IL-8. Overall, these results provide evidence that acPGP plays a critical role during the development of emphysema in cigarette smoke-induced injury, and highlight a new epithelial mechanism by which acPGP augments neutrophilic inflammation.


Asunto(s)
Inflamación/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/etiología , Animales , Células Cultivadas , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Humo/efectos adversos
11.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633902

RESUMEN

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Asunto(s)
Exosomas/fisiología , Neutrófilos/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Humanos , Inflamación , Integrinas , Elastasa de Leucocito/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , alfa 1-Antitripsina/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L653-L661, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30091378

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, PaO2 to FIO2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.


Asunto(s)
Inflamación/etiología , Lesión Pulmonar/etiología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Síndrome de Dificultad Respiratoria/etiología , Adulto , Animales , Permeabilidad Capilar , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Prolina/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología
13.
Eur Respir J ; 52(1)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29748308

RESUMEN

Circulating levels of fibroblast growth factor (FGF)23 are associated with systemic inflammation and increased mortality in chronic kidney disease. α-Klotho, a co-receptor for FGF23, is downregulated in chronic obstructive pulmonary disease (COPD). However, whether FGF23 and Klotho-mediated FGF receptor (FGFR) activation delineates a pathophysiological mechanism in COPD remains unclear. We hypothesised that FGF23 can potentiate airway inflammation via Klotho-independent FGFR4 activation.FGF23 and its effect were studied using plasma and transbronchial biopsies from COPD and control patients, and primary human bronchial epithelial cells isolated from COPD patients as well as a murine COPD model.Plasma FGF23 levels were significantly elevated in COPD patients. Exposure of airway epithelial cells to cigarette smoke and FGF23 led to a significant increase in interleukin-1ß release via Klotho-independent FGFR4-mediated activation of phospholipase Cγ/nuclear factor of activated T-cells signalling. In addition, Klotho knockout mice developed COPD and showed airway inflammation and elevated FGFR4 expression in their lungs, whereas overexpression of Klotho led to an attenuation of airway inflammation.Cigarette smoke induces airway inflammation by downregulation of Klotho and activation of FGFR4 in the airway epithelium in COPD. Inhibition of FGF23 or FGFR4 might serve as a novel anti-inflammatory strategy in COPD.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Glucuronidasa/metabolismo , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/sangre , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Adulto , Anciano , Animales , Células Epiteliales/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glucuronidasa/genética , Humanos , Inflamación/patología , Proteínas Klotho , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos
14.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202450

RESUMEN

The neutrophil chemoattractant proline-glycine-proline (PGP) is generated from collagen by matrix metalloproteinase-8/9 (MMP-8/9) and prolyl endopeptidase (PE), and it is concomitantly degraded by extracellular leukotriene A4 hydrolase (LTA4H) to limit neutrophilia. Components of cigarette smoke can acetylate PGP, yielding a species (AcPGP) that is resistant to LTA4H-mediated degradation and can, thus, support a sustained neutrophilia. In this study, we sought to elucidate if an antiinflammatory system existed to degrade AcPGP that is analogous to the PGP-LTA4H axis. We demonstrate that AcPGP is degraded through a previously unidentified action of the enzyme angiotensin-converting enzyme (ACE). Pulmonary ACE is elevated during episodes of acute inflammation, as a consequence of enhanced vascular permeability, to ensure the efficient degradation of AcPGP. Conversely, we suggest that this pathway is aberrant in chronic obstructive pulmonary disease (COPD) enabling the accumulation of AcPGP. Consequently, we identify a potentially novel protective role for AcPGP in limiting pulmonary fibrosis and suggest the pathogenic function attributed to ACE in idiopathic pulmonary fibrosis (IPF) to be a consequence of overzealous AcPGP degradation. Thus, AcPGP seemingly has very divergent roles: it is pathogenic in its capacity to drive neutrophilic inflammation and matrix degradation in the context of COPD, but it is protective in its capacity to limit fibrosis in IPF.


Asunto(s)
Inflamación/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Fibrosis Pulmonar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Peptidil-Dipeptidasa A/sangre , Enfermedad Pulmonar Obstructiva Crónica/sangre , Fibrosis Pulmonar/patología , Humo
15.
Sci Adv ; 1(3)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26229981

RESUMEN

The compartmentalization and transport of proteins and solutes across the endothelium is a critical biologic function altered during inflammation and disease, leading to pathology in multiple disorders. The impact of tissue damage and subsequent extracellular matrix (ECM) fragmentation in regulating this process is unknown. We demonstrate that the collagen-derived matrikine acetylated proline-glycine-proline (N-α-PGP) serves as a critical regulator of endothelial permeability. N-α-PGP activates human endothelial cells via CXC-chemokine receptor 2 (CXCR2), triggering monolayer permeability through a discrete intracellular signaling pathway. In vivo, N-α-PGP induces local vascular leak after subcutaneous administration and pulmonary vascular permeability after systemic administration. Furthermore, neutralization of N-α-PGP attenuates lipopolysaccharide-induced lung leak. Finally, we demonstrate that plasma from patients with acute respiratory distress syndrome (ARDS) induces VE-cadherin phosphorylation in human endothelial cells, and this activation is attenuated by N-α-PGP blockade with a concomitant improvement in endothelial monolayer impedance. These results identify N-α-PGP as a novel ECM-derived matrikine regulating paracellular permeability during inflammatory disease and demonstrate the potential to target this ligand in various disorders characterized by excessive matrix turnover and vascular leak such as ARDS.

16.
Am J Respir Crit Care Med ; 192(8): 934-42, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26151090

RESUMEN

RATIONALE: Roflumilast is a therapeutic agent in the treatment of chronic obstructive pulmonary disease (COPD). It has antiinflammatory effects; however, it is not known whether it can affect a biologic pathway implicated in COPD pathogenesis and progression. The self-propagating acetyl-proline-glycine-proline (AcPGP) pathway is a novel means of neutrophilic inflammation that is pathologic in the development of COPD. AcPGP is produced by extracellular matrix collagen breakdown with prolyl endopeptidase and leukotriene A4 hydrolase serving as the enzymes responsible for its production and degradation, respectively. OBJECTIVES: We hypothesized that roflumilast would decrease AcPGP, halting the feed-forward cycle of inflammation. METHODS: We conducted a single-center, placebo-controlled, randomized study investigating 12 weeks of roflumilast treatment added to current therapy in moderate-to-severe COPD with chronic bronchitis. Subjects underwent sputum and blood analyses, pulmonary function testing, exercise tolerance, and quality-of-life assessment at 0, 4, and 12 weeks. MEASUREMENTS AND MAIN RESULTS: Twenty-seven patients were enrolled in the intention-to-treat analysis. Roflumilast treatment decreased sputum AcPGP by more than 50% (P < 0.01) and prolyl endopeptidase by 46% (P = 0.02), without significant improvement in leukotriene A4 hydrolase activity compared with placebo. Roflumilast also reduces other inflammatory markers. There were no significant changes in lung function, quality of life, or exercise tolerance between roflumilast- and placebo-treated groups. CONCLUSIONS: Roflumilast reduces pulmonary inflammation through decreasing prolyl endopeptidase activity and AcPGP. As expected for lower AcPGP levels, markers of neutrophilic inflammation are blunted. Inhibiting this self-propagating pathway lessens the overall inflammatory burden, which may alter the natural history of COPD, including the risk of exacerbation. Clinical trial registered with www.clinicaltrials.gov (NCT 01572948).


Asunto(s)
Aminopiridinas/uso terapéutico , Benzamidas/uso terapéutico , Bronquitis Crónica/tratamiento farmacológico , Neutrófilos/inmunología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Anciano , Bronquitis Crónica/enzimología , Bronquitis Crónica/inmunología , Ciclopropanos/uso terapéutico , Método Doble Ciego , Epóxido Hidrolasas/inmunología , Epóxido Hidrolasas/metabolismo , Tolerancia al Ejercicio , Femenino , Volumen Espiratorio Forzado , Glicina/metabolismo , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Prolina/metabolismo , Prolil Oligopeptidasas , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Calidad de Vida , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Transducción de Señal/inmunología , Espirometría , Esputo/enzimología , Resultado del Tratamiento , Capacidad Vital
17.
Free Radic Biol Med ; 55: 101-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23195686

RESUMEN

Tyrosine nitration is a biomarker for the production of peroxynitrite and other reactive nitrogen species. Nitrotyrosine immunoreactivity is present in many pathological conditions including several cardiac diseases. Because the events observed during heart failure may recapitulate some aspects of development, we tested whether nitrotyrosine is present during normal development of the rat embryo heart and its potential relationship in cardiac remodeling through apoptosis. Nitric oxide production is highly dynamic during development, but whether peroxynitrite and nitrotyrosine are formed during normal embryonic development has received little attention. Rat embryo hearts exhibited strong nitrotyrosine immunoreactivity in endocardial and myocardial cells of the atria and ventricles from E12 to E18. After E18, nitrotyrosine staining faded and disappeared entirely by birth. Tyrosine nitration in the myocardial tissue coincided with elevated protein expression of nitric oxide synthases (eNOS and iNOS). The immunoreactivity for these NOS isoforms remained elevated even after nitrotyrosine had disappeared. Tyrosine nitration did not correlate with cell death or proliferation of cardiac cells. Analysis of tryptic peptides by MALDI-TOF showed that nitration occurs in actin, myosin, and the mitochondrial ATP synthase α chain. These results suggest that reactive nitrogen species are not restricted to pathological conditions but may play a role during normal embryonic development.


Asunto(s)
Corazón/embriología , Tirosina/análogos & derivados , Animales , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Tirosina/metabolismo
18.
Kidney Int ; 82(3): 304-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22534964

RESUMEN

Renal injury induced by brain death is characterized by ischemia and inflammation, and limiting it is a therapeutic goal that could improve outcomes in kidney transplantation. Brain death resulted in decreased circulating nitrite levels and increased infiltrating inflammatory cell infiltration into the kidney. Since nitrite stimulates nitric oxide signaling in ischemic tissues, we tested whether nitrite therapy was beneficial in a rat model of brain death followed by kidney transplantation. Nitrite, administered over 2 h of brain death, blunted the increased inflammation without affecting brain death-induced alterations in hemodynamics. Kidneys were transplanted after 2 h of brain death and renal function followed over 7 days. Allografts collected from nitrite-treated brain-dead rats showed significant improvement in function over the first 2 to 4 days after transplantation compared with untreated brain-dead animals. Gene microarray analysis after 2 h of brain death without or with nitrite therapy showed that the latter significantly altered the expression of about 400 genes. Ingenuity Pathway Analysis indicated that multiple signaling pathways were affected by nitrite, including those related to hypoxia, transcription, and genes related to humoral immune responses. Thus, nitrite therapy attenuates brain death-induced renal injury by regulating responses to ischemia and inflammation, ultimately leading to better post-transplant kidney function.


Asunto(s)
Muerte Encefálica/fisiopatología , Trasplante de Riñón/métodos , Riñón/efectos de los fármacos , Daño por Reperfusión/prevención & control , Nitrito de Sodio/administración & dosificación , Alopurinol/farmacología , Animales , Benzoatos/farmacología , Expresión Génica/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Imidazoles/farmacología , Inflamación/prevención & control , Riñón/irrigación sanguínea , Riñón/lesiones , Riñón/fisiopatología , Trasplante de Riñón/fisiología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Nitritos/sangre , Ratas , Ratas Endogámicas Lew , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos
19.
Tissue Eng Part A ; 17(3-4): 399-406, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20807014

RESUMEN

Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival in vitro, rat islets were cultured in three different groups--(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion. Moreover, entire islets in the nanomatrix gel stained positive for dithizone up to 14 days, indicating better maintained glucose-stimulated insulin production. Fluorescein diacetate/propidium iodide staining results also verified necrosis in the bare and insert groups after 7 days, whereas the PA nanomatrix gel maintained islet viability after 14 days. Thus, these results demonstrate the potential of PAs as an intermediary scaffold for increasing the efficacy of pancreatic islet transplantation.


Asunto(s)
Materiales Biomiméticos/síntesis química , Matriz Extracelular/química , Trasplante de Islotes Pancreáticos/fisiología , Nanoestructuras/química , Páncreas Artificial , Animales , Proliferación Celular , Supervivencia Celular , Geles/química , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
20.
J Neurosci ; 27(30): 7929-38, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17652584

RESUMEN

Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3'-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3'-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3'-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.


Asunto(s)
Sustitución de Aminoácidos/genética , Esclerosis Amiotrófica Lateral/enzimología , Regulación hacia Abajo/genética , ARN Mensajero/antagonistas & inhibidores , Superóxido Dismutasa/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , Superóxido Dismutasa/fisiología , Superóxido Dismutasa-1 , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA