Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895226

RESUMEN

The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 230). Finally, we demonstrate the feasibility of pooled culture of Diversity Outbred EpiSCs as "cell villages", which can facilitate the differentiation of large numbers of EpiSC lines for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.

3.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402365

RESUMEN

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Asunto(s)
Proteínas Nucleares , Síndrome de Sotos , Animales , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferasas/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Mamíferos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
4.
Nat Genet ; 55(8): 1336-1346, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488417

RESUMEN

Comprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. We discovered a comprehensive set of enhancers for each of the core endoderm-specifying transcription factors. Many enhancers had strong effects mid-transition but weak effects post-transition, consistent with the nonlinear temporal responses to enhancer perturbation predicted by the modeling. Integrating three-dimensional genomic information, we were able to develop a CTCF-loop-constrained Interaction Activity model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and systematic enhancer discovery in both normal and pathological cell state transitions.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Humanos , Elementos de Facilitación Genéticos/genética , Diferenciación Celular/genética , Factores de Transcripción/genética , Redes Reguladoras de Genes/genética , Cromatina/genética
5.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37383948

RESUMEN

The appropriate development of macrophages, the body's professional phagocyte, is essential for organismal development, especially in mammals. This dependence is exemplified by the observation that loss-of-function mutations in colony stimulating factor 1 receptor (CSF1R) results in multiple tissue abnormalities owing to an absence of macrophages. Despite this importance, little is known about the molecular and cell biological regulation of macrophage development. Here, we report the surprising finding that the chloride-sensing kinase With-no-lysine 1 (WNK1) is required for development of tissue-resident macrophages (TRMs). Myeloid-specific deletion of Wnk1 resulted in a dramatic loss of TRMs, disrupted organ development, systemic neutrophilia, and mortality between 3 and 4 weeks of age. Strikingly, we found that myeloid progenitors or precursors lacking WNK1 not only failed to differentiate into macrophages, but instead differentiated into neutrophils. Mechanistically, the cognate CSF1R cytokine macrophage-colony stimulating factor (M-CSF) stimulates macropinocytosis by both mouse and human myeloid progenitors and precursor cells. Macropinocytosis, in turn, induces chloride flux and WNK1 phosphorylation. Importantly, blocking macropinocytosis, perturbing chloride flux during macropinocytosis, and inhibiting WNK1 chloride-sensing activity each skewed myeloid progenitor differentiation from macrophages into neutrophils. Thus, we have elucidated a role for WNK1 during macropinocytosis and discovered a novel function of macropinocytosis in myeloid progenitors and precursor cells to ensure macrophage lineage fidelity. Highlights: Myeloid-specific WNK1 loss causes failed macrophage development and premature deathM-CSF-stimulated myeloid progenitors and precursors become neutrophils instead of macrophagesM-CSF induces macropinocytosis by myeloid progenitors, which depends on WNK1Macropinocytosis enforces macrophage lineage commitment.

6.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945628

RESUMEN

Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.

7.
Elife ; 112022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36043696

RESUMEN

Sequence variation in enhancers that control cell-type-specific gene transcription contributes significantly to phenotypic variation within human populations. However, it remains difficult to predict precisely the effect of any given sequence variant on enhancer function due to the complexity of DNA sequence motifs that determine transcription factor (TF) binding to enhancers in their native genomic context. Using F1-hybrid cells derived from crosses between distantly related inbred strains of mice, we identified thousands of enhancers with allele-specific TF binding and/or activity. We find that genetic variants located within the central region of enhancers are most likely to alter TF binding and enhancer activity. We observe that the AP-1 family of TFs (Fos/Jun) are frequently required for binding of TEAD TFs and for enhancer function. However, many sequence variants outside of core motifs for AP-1 and TEAD also impact enhancer function, including sequences flanking core TF motifs and AP-1 half sites. Taken together, these data represent one of the most comprehensive assessments of allele-specific TF binding and enhancer function to date and reveal how sequence changes at enhancers alter their function across evolutionary timescales.


There are hundreds of different types of cells in the body. Each one performs a unique role, but they all share the same genes. Sequences of the genetic code called enhancers decide which genes each cell uses. Enhancers work like genetic switches: to turn a gene on, proteins called transcription factors assemble on an enhancer. Each transcription factor recognises a short sequence on the enhancer, and several distinct transcription factors work together to promote the activatation of a gene. The relationship between transcription factors, enhancers, and gene activation is complex. The specific genetic sequences of enhancers differ between species, changing the way these genetic switches work. But scientists are not yet able to reliably predict the effects of small changes in the DNA sequence of an enhancer. One way to tackle this problem is to look at different versions of the same enhancers side by side to see how small mutations change their behaviour. Mammalian cells generally carry two copies of each chromosome (the molecules that contain the genetic code), one inherited from each parent. Each of the two copies carries the same genes and enhancers, but there are many small differences in the DNA sequences of enhancers between the chromosomes inherited from each parent, which can potentially alter their function Yang, Ling et al. generated cells from mice that come from different inbred strains, which are similar to purebred dogs. By breeding two distinct inbred mouse strains together that are very different from one another, they generated a panel of hybrid mouse cell lines that have a relatively large number of differences in their DNA sequence between the maternal and paternal chromosomes. Looking at the different versions of each enhancer side-by-side revealed thousands of single letter changes in the DNA sequence of enhancers that changed how they work. Mutations affecting the binding site of one transcription factor within an enhancer can indirectly affect the binding of other types of transcription factors. Yang, Ling et al. found that if a transcription factor could no longer find its place on an enhancer, it stopped others from binding even if their own places had not changed. Sometimes, mutations on either side of the binding sequences also affected transcription factor binding. This suggests a more complex relationship than previously thought may exist between the DNA sequence of an enhancer and the transcription factors that bind to it. Spotting the differences caused by mutations could help further the efforts of scientists to read and write the genetic code. This could have many benefits. It would allow scientists to control natural or artificial genes, and to predict the effects of genetic changes that are identified in humans with genetic diseases. This might improve genetic experiments, medical screening, gene therapy, and our understanding of evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Variación Genética , Factor de Transcripción AP-1 , Animales , Humanos , Ratones , Sitios de Unión/genética , Elementos de Facilitación Genéticos/genética , Variación Genética/genética , Motivos de Nucleótidos/genética , Unión Proteica/genética , Factor de Transcripción AP-1/genética
8.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35899604

RESUMEN

Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.


Asunto(s)
Endodermo , Células Madre Pluripotentes , Animales , Diferenciación Celular/fisiología , Endodermo/metabolismo , Femenino , Estratos Germinativos , Humanos , Mamíferos , Ratones , Organoides , Embarazo , Prosencéfalo
9.
Dev Cell ; 56(22): 3052-3065.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34710357

RESUMEN

Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.


Asunto(s)
Alelos , Proteínas de Unión al Calcio/genética , Metilación de ADN/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Animales , Cromosomas/genética , Impresión Genómica/genética , Yoduro Peroxidasa/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética
11.
Nat Neurosci ; 21(12): 1670-1679, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455458

RESUMEN

In females with X-linked genetic disorders, wild-type and mutant cells coexist within brain tissue because of X-chromosome inactivation, posing challenges for interpreting the effects of X-linked mutant alleles on gene expression. We present a single-nucleus RNA sequencing approach that resolves mosaicism by using single-nucleotide polymorphisms in genes expressed in cis with the X-linked mutation to determine which nuclei express the mutant allele even when the mutant gene is not detected. This approach enables gene expression comparisons between mutant and wild-type cells within the same individual, eliminating variability introduced by comparisons to controls with different genetic backgrounds. We apply this approach to mosaic female mouse models and humans with Rett syndrome, an X-linked neurodevelopmental disorder caused by mutations in the gene encoding the methyl-DNA-binding protein MECP2, and observe that cell-type-specific DNA methylation predicts the degree of gene upregulation in MECP2-mutant neurons. This approach can be broadly applied to study gene expression in mosaic X-linked disorders.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Alelos , Metilación de ADN , Femenino , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Mosaicismo , Mutación , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Síndrome de Rett/metabolismo , Análisis de Secuencia de ARN
12.
Mol Cell ; 68(6): 1067-1082.e12, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29272704

RESUMEN

Enhancer elements are genomic regulatory sequences that direct the selective expression of genes so that genetically identical cells can differentiate and acquire the highly specialized forms and functions required to build a functioning animal. To differentiate, cells must select from among the ∼106 enhancers encoded in the genome the thousands of enhancers that drive the gene programs that impart their distinct features. We used a genetic approach to identify transcription factors (TFs) required for enhancer selection in fibroblasts. This revealed that the broadly expressed, growth-factor-inducible TFs FOS/JUN (AP-1) play a central role in enhancer selection. FOS/JUN selects enhancers together with cell-type-specific TFs by collaboratively binding to nucleosomal enhancers and recruiting the SWI/SNF (BAF) chromatin remodeling complex to establish accessible chromatin. These experiments demonstrate how environmental signals acting via FOS/JUN and BAF coordinate with cell-type-specific TFs to select enhancer repertoires that enable differentiation during development.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos , Proteínas Proto-Oncogénicas c-fos/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleosomas , Regiones Promotoras Genéticas , Factores de Transcripción/genética
13.
Nature ; 544(7649): 245-249, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28379941

RESUMEN

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Asunto(s)
Linaje de la Célula/genética , Reprogramación Celular/genética , Silenciador del Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/deficiencia , Especificidad de Órganos/genética , Dominios Proteicos , Receptores Notch/deficiencia , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Factores de Transcripción/deficiencia
14.
Nat Neurosci ; 17(10): 1330-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25195102

RESUMEN

Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) and binding of the transcriptional coactivator CREBBP (also called CBP) that shows increased acetylation of histone H3 Lys27 (H3K27ac) after membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which was previously thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease.


Asunto(s)
Regulación de la Expresión Génica/genética , Neuronas/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Proteína de Unión a CREB/metabolismo , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/efectos de los fármacos , Proteínas Oncogénicas v-fos/metabolismo , Cloruro de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo , Corteza Visual/citología
15.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243019

RESUMEN

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
16.
Cell Rep ; 4(3): 477-91, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23891001

RESUMEN

FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs). Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors, and FOXO3 shares common targets with the proneuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the prolongevity transcription factor FOXO3 and the cell-fate determinant ASCL1 and raises the possibility that FOXO3's ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Genoma , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
17.
Nat Biotechnol ; 31(5): 434-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23584610

RESUMEN

Transplantation of oligodendrocyte precursor cells (OPCs) is a promising potential therapeutic strategy for diseases affecting myelin. However, the derivation of engraftable OPCs from human pluripotent stem cells has proven difficult and primary OPCs are not readily available. Here we report the generation of induced OPCs (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to reprogram mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures resembling primary OPCs. More importantly, iOPCs gave rise to mature oligodendrocytes that could ensheath multiple host axons when co-cultured with primary dorsal root ganglion cells and formed myelin after transplantation into shiverer mice. We propose direct lineage reprogramming as a viable alternative approach for the generation of OPCs for use in disease modeling and regenerative medicine.


Asunto(s)
Fibroblastos/citología , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Oligodendroglía/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Animales , Diferenciación Celular , Fibroblastos/fisiología , Mejoramiento Genético/métodos , Ratones , Trasplante de Células Madre/métodos
18.
Mol Cell ; 47(6): 827-38, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23020854

RESUMEN

During development, diverse cellular identities are established and maintained in the embryo. Although remarkably robust in vivo, cellular identities can be manipulated using experimental techniques. Lineage reprogramming is an emerging field at the intersection of developmental and stem cell biology in which a somatic cell is stably reprogrammed into a distinct cell type by forced expression of lineage-determining factors. Lineage reprogramming enables the direct conversion of readily available cells from patients (such as skin fibroblasts) into disease-relevant cell types (such as neurons and cardiomyocytes) or into induced pluripotent stem cells. Although remarkable progress has been made in developing novel reprogramming methods, the efficiency and fidelity of reprogramming need to be improved in order increase the experimental and translational utility of reprogrammed cells. Studying the mechanisms that prevent successful reprogramming should allow for improvements in reprogramming methods, which could have significant implications for regenerative medicine and the study of human disease. Furthermore, lineage reprogramming has the potential to become a powerful system for dissecting the mechanisms that underlie cell fate establishment and terminal differentiation processes. In this review, we will discuss how transcription factors interface with the genome and induce changes in cellular identity in the context of development and reprogramming.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Medicina Regenerativa , Factores de Transcripción/metabolismo , Xenopus
19.
Nat Biotechnol ; 29(10): 892-907, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21997635

RESUMEN

Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.


Asunto(s)
Linaje de la Célula , Animales , Investigación Biomédica , Reprogramación Celular/genética , Endodermo/citología , Epigénesis Genética , Humanos , Especificidad de Órganos
20.
Nature ; 476(7359): 220-3, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21617644

RESUMEN

Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Corteza Cerebral/citología , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Conductividad Eléctrica , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Potenciales de la Membrana , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa , Sinapsis/metabolismo , Factores de Transcripción/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...