Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Heart Fail ; 26(3): 674-682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38269451

RESUMEN

AIM: Inhibition of microRNA (miR)-132 effectively prevents and reverses adverse cardiac remodelling, making it an attractive heart failure (HF) target. CDR132L, a synthetic antisense oligonucleotide selectively blocking pathologically elevated miR-132, demonstrated beneficial effects on left ventricular (LV) structure and function in relevant preclinical models, and was safe and well tolerated in a Phase 1b study in stable chronic HF patients. Patients with acute myocardial infarction (MI) and subsequent LV dysfunction and remodelling have limited therapeutic options, and may profit from early CDR132L treatment. METHODS: The HF-REVERT (Phase 2, multicenter, randomized, parallel, 3-arm, placebo-controlled Study to Assess Efficacy and Safety of CDR132L in Patients with Reduced Left Ventricular Ejection Fraction after Myocardial Infarction) evaluates the efficacy and safety of CDR132L in HF patients post-acute MI (n = 280), comparing the effect of 5 and 10 mg/kg CDR132L, administered as three single intravenous doses 28 days apart, in addition to standard of care. Key inclusion criteria are the diagnosis of acute MI, the development of systolic dysfunction (LV ejection fraction ≤45%) and elevated N-terminal pro-B-type natriuretic peptide. The study consists of a 6-month double-blinded treatment period with the primary endpoint LV end-systolic volume index and relevant secondary endpoints, followed by a 6-month open-label observation period. CONCLUSION: The HF-REVERT trial may underpin the concept of miR-132 inhibition to prevent or reverse cardiac remodelling in post-MI HF. The results will inform the design of subsequent outcome trials to test CDR132L in HF.


Asunto(s)
Infarto del Miocardio , Volumen Sistólico , Humanos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/complicaciones , Volumen Sistólico/fisiología , Masculino , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Resultado del Tratamiento , MicroARNs , Remodelación Ventricular/efectos de los fármacos , Persona de Mediana Edad , Anciano , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/administración & dosificación , Método Doble Ciego , Función Ventricular Izquierda/fisiología , Función Ventricular Izquierda/efectos de los fármacos
2.
JACC Basic Transl Sci ; 8(12): 1595-1598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205345

RESUMEN

The ability of nucleic acids for intramolecular interactions opens manifold opportunities for novel medicines that have the potential to treat intractable human disorders, including heart disease. In this context, microRNAs have been identified as pleiotropic regulators of disease pathways and consequently as powerful therapeutic targets. With antisense oligonucleotides novel drug modalities are available to specifically inhibit as well as correct derailed microRNAs including pathological downstream pathways potentially restoring hallmarks of disease. However, only a handful of microRNA-targeting drugs underwent clinical testing so far, and none in the cardiovascular field. In this paper, the authors introduce the first-ever microRNA-based therapy that entered clinical trials in heart disease and present the previous development from target identification to first-in-human studies.

3.
Mol Ther ; 30(12): 3601-3618, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35810332

RESUMEN

AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.


Asunto(s)
Miocitos Cardíacos , ARN Largo no Codificante , Animales , Humanos , Ratones , Tropismo , Cápside
4.
Circ Heart Fail ; 14(7): e006898, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34247489

RESUMEN

BACKGROUND: Peripartum cardiomyopathy (PPCM) is a life-threatening disease in women without previously known cardiovascular disease. It is characterized by a sudden onset of heart failure before or after delivery. Previous studies revealed that the generation of a 16-kDa PRL (prolactin) metabolite, the subsequent upregulation of miR-146a, and the downregulation of the target gene Erbb4 is a common driving factor of PPCM. METHODS: miRNA profiling was performed in plasma of PPCM patients (n=33) and postpartum-matched healthy CTRLs (controls; n=36). Elevated miRNAs in PPCM plasma, potentially targeting ERBB4 (erythroblastic leukemia viral oncogene homolog 4), were overexpressed in cardiomyocytes using lentiviral vectors. Next, cardiac function, cardiac morphology, and PPCM phenotype were investigated after recurrent pregnancies of HZ (heterozygous) cardiomyocyte-specific Erbb4 mice (Erbb4F/+ αMHC-Cre+, n=9) with their age-matched nonpregnant CTRLs (n=9-10). RESULTS: Here, we identify 9 additional highly conserved miRNAs (miR-199a-5p and miR-199a-3p, miR-145a-5p, miR-130a-3p, miR-135a-5p, miR-221-3p, miR-222-3p, miR-23a-3p, and miR19b-3p) that target tyrosine kinase receptor ERBB4 and are over 4-fold upregulated in plasma of PPCM patients at the time of diagnosis. We confirmed that miR-146a, miR-199a-5p, miR-221-3p, miR-222-3p, miR-23a-3p, miR-130a-5p, and miR-135-3p overexpression decreases ERBB4 expression in cardiomyocytes (-29% to -50%; P<0.05). In addition, we demonstrate that genetic cardiomyocyte-specific downregulation of Erbb4 during pregnancy suffices to induce a variant of PPCM in mice, characterized by left ventricular dilatation (postpartum second delivery: left ventricular internal diameter in diastole, +19±7% versus HZ-CTRL; P<0.05), increased atrial natriuretic peptide (ANP) levels (4-fold increase versus HZ-CTRL mice, P<0.001), decreased VEGF (vascular endothelial growth factor) and VE-cadherin levels (-33±17%, P=0.07; -27±20%, P<0.05 versus HZ-CTRL), and histologically enlarged cardiomyocytes (+20±21%, versus HZ-CTRL, P<0.05) but without signs of myocardial apoptosis and inflammation. CONCLUSIONS: ERBB4 is essential to protect the maternal heart from peripartum stress. Downregulation of ERBB4 in cardiomyocytes induced by multiple miRNAs in the peripartum period may be crucial in PPCM pathophysiology. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00998556.


Asunto(s)
Cardiomiopatías/fisiopatología , Insuficiencia Cardíaca/genética , MicroARNs/genética , Receptor ErbB-4/genética , Animales , Cardiomiopatías/genética , Enfermedades Cardiovasculares/genética , Femenino , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Periodo Periparto/metabolismo , Embarazo , Receptor ErbB-4/metabolismo
5.
J Am Coll Cardiol ; 77(23): 2923-2935, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34112319

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy is a result of afterload-increasing pathologies including untreated hypertension and aortic stenosis. It features progressive adverse cardiac remodeling, myocardial dysfunction, capillary rarefaction, and interstitial fibrosis often leading to heart failure. OBJECTIVES: This study aimed to establish a novel porcine model of pressure-overload-induced heart failure and to determine the effect of inhibition of microribonucleic acid 132 (miR-132) on heart failure development in this model. METHODS: This study developed a novel porcine model of percutaneous aortic constriction by implantation of a percutaneous reduction stent in the thoracic aorta, inducing progressive remodeling at day 56 (d56) after pressure-overload induction. In this study, an antisense oligonucleotide specifically inhibiting miR-132 (antimiR-132), was regionally applied via intracoronary injection at d0 (percutaneous transverse aortic constriction induction) and d28. RESULTS: At d56, antimiR-132 treatment diminished cardiomyocyte cross-sectional area (188.9 ± 2.8 vs. 258.4 ± 9.0 µm2 in untreated hypertrophic hearts) and improved global cardiac function (ejection fraction 48.9 ± 1.0% vs. 36.1 ± 1.7% in control hearts). Moreover, at d56 antimiR-132-treated hearts displayed less increase of interstitial fibrosis compared with sham-operated hearts (Δsham 1.8 ± 0.5%) than control hearts (Δsham 10.8 ± 0.6%). Of note, cardiac platelet and endothelial cell adhesion molecule 1+ capillary density was higher in the antimiR-132-treated hearts (647 ± 20 cells/mm2) compared with in the control group (485 ± 23 cells/mm2). CONCLUSIONS: The inhibition of miR-132 is a valid strategy in prevention of heart failure progression in hypertrophic heart disease and may be developed as a treatment for heart failure of nonischemic origin.


Asunto(s)
Antagomirs/administración & dosificación , Enfermedades de la Aorta/complicaciones , Cardiomegalia/tratamiento farmacológico , MicroARNs/antagonistas & inhibidores , Remodelación Ventricular/efectos de los fármacos , Animales , Aorta Torácica/cirugía , Cardiomegalia/complicaciones , Cardiomegalia/diagnóstico , Constricción , Constricción Patológica/complicaciones , Vasos Coronarios , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Inyecciones Intraarteriales , MicroARNs/genética , MicroARNs/metabolismo , Stents/efectos adversos , Porcinos , Resultado del Tratamiento
6.
Eur Heart J ; 42(2): 192-201, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33089304

RESUMEN

AIMS: Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI. METHODS AND RESULTS: In a chronic model of post-MI HF, slow-growing pigs underwent 90 min left anterior descending artery occlusion followed by reperfusion. Animals were randomized and treatment started 1-month post-MI. Monthly intravenous (IV) treatments of CDR132L over 3 or 5 months (3× or 5×) were applied in a blinded randomized placebo-controlled fashion. Efficacy was evaluated based on serial magnetic resonance imaging, haemodynamic, and biomarker analyses. The treatment regime provided sufficient tissue exposure and CDR132L was well tolerated. Overall, CDR132L treatment significantly improved cardiac function and reversed cardiac remodelling. In addition to the systolic recovery, diastolic function was also ameliorated in this chronic model of HF. CONCLUSION: Monthly repeated dosing of CDR132L is safe and adequate to provide clinically relevant exposure and therapeutic efficacy in a model of chronic post-MI HF. CDR132L thus should be explored as treatment for the broad area of chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Diástole , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Porcinos , Remodelación Ventricular
7.
Eur Heart J ; 42(2): 178-188, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33245749

RESUMEN

AIMS: Cardiac microRNA-132-3p (miR-132) levels are increased in patients with heart failure (HF) and mechanistically drive cardiac remodelling processes. CDR132L, a specific antisense oligonucleotide, is a first-in-class miR-132 inhibitor that attenuates and even reverses HF in preclinical models. The aim of the current clinical Phase 1b study was to assess safety, pharmacokinetics, target engagement, and exploratory pharmacodynamic effects of CDR132L in patients on standard-of-care therapy for chronic ischaemic HF in a randomized, placebo-controlled, double-blind, dose-escalation study (NCT04045405). METHODS AND RESULTS: Patients had left ventricular ejection fraction between ≥30% and <50% or amino terminal fragment of pro-brain natriuretic peptide (NT-proBNP) >125 ng/L at screening. Twenty-eight patients were randomized to receive CDR132L (0.32, 1, 3, and 10 mg/kg body weight) or placebo (0.9% saline) in two intravenous infusions, 4 weeks apart in four cohorts of seven (five verum and two placebo) patients each. CDR132L was safe and well tolerated, without apparent dose-limiting toxicity. A pharmacokinetic/pharmacodynamic dose modelling approach suggested an effective dose level at ≥1 mg/kg CDR132L. CDR132L treatment resulted in a dose-dependent, sustained miR-132 reduction in plasma. Patients given CDR132L ≥1 mg/kg displayed a median 23.3% NT-proBNP reduction, vs. a 0.9% median increase in the control group. CDR132L treatment induced significant QRS narrowing and encouraging positive trends for relevant cardiac fibrosis biomarkers. CONCLUSION: This study is the first clinical trial of an antisense drug in HF patients. CDR132L was safe and well tolerated, confirmed linear plasma pharmacokinetics with no signs of accumulation, and suggests cardiac functional improvements. Although this study is limited by the small patient numbers, the indicative efficacy of this drug is very encouraging justifying additional clinical studies to confirm the beneficial CDR132L pharmacodynamic effects for the treatment of HF.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Método Doble Ciego , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Volumen Sistólico , Resultado del Tratamiento , Función Ventricular Izquierda
8.
Eur Heart J ; 41(36): 3462-3474, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32657324

RESUMEN

AIMS: Pathological cardiac remodelling and subsequent heart failure represents an unmet clinical need. Long non-coding RNAs (lncRNAs) are emerging as crucial molecular orchestrators of disease processes, including that of heart diseases. Here, we report on the powerful therapeutic potential of the conserved lncRNA H19 in the treatment of pathological cardiac hypertrophy. METHOD AND RESULTS: Pressure overload-induced left ventricular cardiac remodelling revealed an up-regulation of H19 in the early phase but strong sustained repression upon reaching the decompensated phase of heart failure. The translational potential of H19 is highlighted by its repression in a large animal (pig) model of left ventricular hypertrophy, in diseased human heart samples, in human stem cell-derived cardiomyocytes and in human engineered heart tissue in response to afterload enhancement. Pressure overload-induced cardiac hypertrophy in H19 knock-out mice was aggravated compared to wild-type mice. In contrast, vector-based, cardiomyocyte-directed gene therapy using murine and human H19 strongly attenuated heart failure even when cardiac hypertrophy was already established. Mechanistically, using microarray, gene set enrichment analyses and Chromatin ImmunoPrecipitation DNA-Sequencing, we identified a link between H19 and pro-hypertrophic nuclear factor of activated T cells (NFAT) signalling. H19 physically interacts with the polycomb repressive complex 2 to suppress H3K27 tri-methylation of the anti-hypertrophic Tescalcin locus which in turn leads to reduced NFAT expression and activity. CONCLUSION: H19 is highly conserved and down-regulated in failing hearts from mice, pigs and humans. H19 gene therapy prevents and reverses experimental pressure-overload-induced heart failure. H19 acts as an anti-hypertrophic lncRNA and represents a promising therapeutic target to combat pathological cardiac remodelling.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , ARN Largo no Codificante , Animales , Cardiomegalia/genética , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Hipertrofia Ventricular Izquierda , Ratones , Ratones Noqueados , Miocitos Cardíacos , ARN Largo no Codificante/genética , Porcinos
9.
J Mol Cell Cardiol ; 146: 43-59, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649928

RESUMEN

Myocardial ischemia induces a multifaceted remodeling process in the heart. Novel therapeutic entry points to counteract maladaptive signalling include the modulation of non-coding RNA molecules such as long non-coding RNA (lncRNA). We here questioned if the lncRNA candidate H19 exhibits regulatory potential in the setting of myocardial infarction. Initial profiling of H19 expression revealed a dynamic expression profile of H19 with upregulation in the acute phase after murine cardiac ischemia. In vitro, we found that oxygen deficiency leads to H19 upregulation in several cardiac cell types. Repression of endogenous H19 caused multiple phenotypes in cultivated murine cardiomyocytes including enhanced cardiomyocyte apoptosis, at least partly through attenuated vitamin D signalling. Unbiased proteome analysis revealed further involvement of H19 in mRNA splicing and translation as well as inflammatory signalling pathways. To study H19 function more precisely, we investigated the phenotype of systemic H19 loss in a genetic mouse model of H19 deletion (H19 KO). Infarcted heart tissue of H19 KO mice showed a massive increase of pro-inflammatory cytokines after ischemia-reperfusion injury (I/R) without significant effects on scar formation or cardiac function but exaggerated cardiac hypertrophy indicating pathological cardiac remodeling. H19-dependent changes in cardiomyocyte-derived extracellular vesicle release and alterations in NF-κB signalling were evident. Cardiac cell fractionation experiments revealed that enhanced H19 expression in the proliferative phase after MI derived mainly from cardiac fibroblasts. Here further research is needed to elucidate its role in fibroblast activation and function. In conclusion, the lncRNA H19 is dynamically regulated after MI and involved in multiple pathways of different cardiac cell types including cardiomyocyte apoptosis and cardiac inflammation.


Asunto(s)
Pleiotropía Genética , Corazón/fisiopatología , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatología , ARN Largo no Codificante/metabolismo , Animales , Línea Celular , Supervivencia Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Oxígeno , Proteoma/metabolismo , ARN Largo no Codificante/genética , Receptores de Calcitriol/metabolismo , Remodelación Vascular/genética
10.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012801

RESUMEN

Acute lung injury (ALI) is characterized by enhanced permeability of the air-blood barrier, pulmonary edema, and hypoxemia. MicroRNA-21 (miR-21) was shown to be involved in pulmonary remodeling and the pathology of ALI, and we hypothesized that miR-21 knock-out (KO) reduces injury and remodeling in ALI. ALI was induced in miR-21 KO and C57BL/6N (wildtype, WT) mice by an intranasal administration of 75 µg lipopolysaccharide (LPS) in saline (n = 10 per group). The control mice received saline alone (n = 7 per group). After 24 h, lung function was measured. The lungs were then excised for proteomics, cytokine, and stereological analysis to address inflammatory signaling and structural damage. LPS exposure induced ALI in both strains, however, only WT mice showed increased tissue resistance and septal thickening upon LPS treatment. Septal alterations due to LPS exposure in WT mice consisted of an increase in extracellular matrix (ECM), including collagen fibrils, elastic fibers, and amorphous ECM. Proteomics analysis revealed that the inflammatory response was dampened in miR-21 KO mice with reduced platelet and neutrophil activation compared with WT mice. The WT mice showed more functional and structural changes and inflammatory signaling in ALI than miR-21 KO mice, confirming the hypothesis that miR-21 KO reduces the development of pathological changes in ALI.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , MicroARNs/genética , Alveolos Pulmonares/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/ultraestructura , Animales , Cromatografía Liquida , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Alveolos Pulmonares/patología , Alveolos Pulmonares/ultraestructura , Células RAW 264.7 , Pruebas de Función Respiratoria
11.
Nat Commun ; 11(1): 633, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005803

RESUMEN

Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , MicroARNs/genética , Oligonucleótidos Antisentido/genética , Animales , Evaluación Preclínica de Medicamentos , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Humanos , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacocinética , Porcinos
12.
FEBS Lett ; 592(6): 1020-1029, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29427517

RESUMEN

Curli are functional amyloids that form a major part of the biofilm produced by many enterobacteriaceae. A multiprotein system around the outer membrane protein CsgG is in charge of the export and controlled propagation of the main Curli subunits, CsgA and CsgB. CsgF is essential for the linkage of the main amyloid-forming proteins to the cell surface. Here, we present a profound biochemical and biophysical characterization of recombinant CsgF, highlighted by a solution NMR structure of CsgF in the presence of dihexanoylphosphocholine micelles. Interestingly, CsgF contains large unstructured domains and does not show a globular fold. The data presented shed new light on the molecular mechanism of Curli amyloid surface attachment.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue de Proteína , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Circ Res ; 121(5): 575-583, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28630135

RESUMEN

RATIONALE: Cardiac fibroblasts (CFs) drive extracellular matrix remodeling after pressure overload, leading to fibrosis and diastolic dysfunction. Recent studies described the role of long noncoding RNAs (lncRNAs) in cardiac pathologies. Nevertheless, detailed reports on lncRNAs regulating CF biology and describing their implication in cardiac remodeling are still missing. OBJECTIVE: Here, we aimed at characterizing lncRNA expression in murine CFs after chronic pressure overload to identify CF-enriched lncRNAs and investigate their function and contribution to cardiac fibrosis and diastolic dysfunction. METHODS AND RESULTS: Global lncRNA profiling identified several dysregulated transcripts. Among them, the lncRNA maternally expressed gene 3 (Meg3) was found to be mostly expressed by CFs and to undergo transcriptional downregulation during late cardiac remodeling. In vitro, Meg3 regulated the production of matrix metalloproteinase-2 (MMP-2). GapmeR-mediated silencing of Meg3 in CFs resulted in the downregulation of Mmp-2 transcription, which, in turn, was dependent on P53 activity both in the absence and in the presence of transforming growth factor-ß I. Chromatin immunoprecipitation showed that further induction of Mmp-2 expression by transforming growth factor-ß I was blocked by Meg3 silencing through the inhibition of P53 binding on the Mmp-2 promoter. Consistently, inhibition of Meg3 in vivo after transverse aortic constriction prevented cardiac MMP-2 induction, leading to decreased cardiac fibrosis and improved diastolic performance. CONCLUSIONS: Collectively, our findings uncover a critical role for Meg3 in the regulation of MMP-2 production by CFs in vitro and in vivo, identifying a new player in the development of cardiac fibrosis and potential new target for the prevention of cardiac remodeling.


Asunto(s)
Fibroblastos/metabolismo , Insuficiencia Cardíaca Diastólica/metabolismo , Insuficiencia Cardíaca Diastólica/prevención & control , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/prevención & control , Células Cultivadas , Fibroblastos/patología , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/prevención & control , Insuficiencia Cardíaca Diastólica/patología , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Ratas , Remodelación Ventricular/fisiología
14.
Circ Res ; 120(2): 262-264, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104764

RESUMEN

A novel long noncoding RNA Chaer acts as noncoding epigenetic regulator at the onset of cardiac hypertrophy and enables an improved understanding about the complex mechanisms in cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , ARN Largo no Codificante/genética , Remodelación Ventricular/genética , Animales , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Humanos
15.
Circ Res ; 120(2): 381-399, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104771

RESUMEN

The discovery of thousands of noncoding RNAs (ncRNAs) has expanded our view on mammalian genomes and transcriptomes, as well as their organization and regulation. Accumulating evidence on aberrantly regulated ncRNAs, including short microRNAs, long ncRNAs and circular RNAs, across various heart diseases indicates that ncRNAs are critical contributors to cardiovascular pathophysiology. In addition, ncRNAs are released into the circulation where they are present in concentration levels that differ between healthy subjects and diseased patients. Although little is known about the origin and function of such circulating ncRNAs, these molecules are increasingly recognized as noninvasive and readily accessible biomarker for risk stratification, diagnosis and prognosis of cardiac injury, and multiple forms of cardiovascular disease. In this review, we summarize recent findings on biological characteristics of circulating ncRNAs and highlight their value as potential biomarker in selected pathologies of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , ARN no Traducido/sangre , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/genética , Humanos , MicroARNs/sangre , MicroARNs/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/genética , ARN no Traducido/genética
16.
Physiol Rev ; 96(4): 1297-325, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27535639

RESUMEN

Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.


Asunto(s)
MicroARNs/fisiología , ARN Largo no Codificante/fisiología , ARN/fisiología , Biomarcadores/metabolismo , Humanos , ARN Circular
17.
Sci Transl Med ; 8(326): 326ra22, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888430

RESUMEN

Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.


Asunto(s)
ARN Largo no Codificante/metabolismo , Remodelación Ventricular/genética , Animales , Secuencia de Bases , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Presión , ARN Largo no Codificante/genética , Transducción de Señal , Investigación Biomédica Traslacional
19.
J Mol Cell Cardiol ; 89(Pt A): 3-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25486579

RESUMEN

MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'.


Asunto(s)
Biología Computacional/métodos , MicroARNs/metabolismo , Animales , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/biosíntesis , Datos de Secuencia Molecular
20.
Exp Lung Res ; 40(4): 154-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24712849

RESUMEN

The surfactant-associated proteins SP-A and D are pattern recognition molecules with collectin structure. A single nucleotide polymorphism (SNP) exchanging a methionine (Met) for a threonine (Thr) in the amino-terminal SP-D domain influences the oligomeric structure and function of the protein. In this study, we investigated the susceptibility of mice transgenic for the human SP-D Met(11)Thr SNP to allergic airway inflammation and consequences for microRNA (miRNA, miR) expression. Mice expressing either human Met or Thr SP-D were sensitized and challenged with ovalbumin (OVA) in an acute model of allergic asthma. The influence of the SP-D polymorphism on the allergic airway inflammation was evaluated by lung function measurement, pulmonary inflammation parameters, morphological analysis and miRNA expression. Airway hyperresponsiveness, allergic inflammation, and mucus metaplasia were not significantly different between mice expressing one or the other allelic variant of SP-D. OVA sensitization and challenge led to significant airway hyperresponsiveness in wildtype mice and significantly lower eosinophil numbers and interleukin 5 levels in Thr SP-D mice. OVA challenge induced an upregulation of miR-21 and 155 in Thr SP-D mice and a downregulation of miR-21 in Met SP-D mice. Our results show that murine expression of human polymorphic SP-D variants does not significantly influence the severity of allergic airway inflammation. MiR-21 and 155 are differentially regulated in transgenic mice in response to allergic inflammation. Further studies are required to elucidate the impact of this SNP on inflammatory conditions of the lung.


Asunto(s)
Proteína D Asociada a Surfactante Pulmonar/genética , Hipersensibilidad Respiratoria/genética , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Moco/metabolismo , Ovalbúmina , Fenotipo , Polimorfismo de Nucleótido Simple , Hipersensibilidad Respiratoria/metabolismo , Mucosa Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...